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Dynamical coarse-graining of highly fluctuating membranes under shear flow
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The effect of strong shear flow on highly fluctuating lamellar systems stabilized by intermembrane collisions
via the Helfrich interaction is studied. Advection enters the microscopic equation of motion for a single
membrane via a nonlinear coupling. Upon coarse-graining the theory for a single bilayer up to the length scale
of the collision length, at which a hydrodynamic description applies, an additional dynamical coupling is
generated which is of the form of a wave-vector-dependent tension that is nonlinear in the applied shear rate.
This new term has consequences for the effects of strong flow on the stability and dynamics of lamellar
surfactant phases.
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I. INTRODUCTION AND OVERVIEW

Dilute solutions of lamellar phases typically consist
highly fluctuating layers. The wide equilibrium layer spa
ings are governed by the interplay between the long-ra
steric repulsion, known as the Helfrich interaction@1#, and
the bending elasticity of the bilayers. When these syste
undergo flow, a range of interesting phenomena is obser
such as transitions to multilamellar vesicles@2,3# and a re-
duction in layer spacing@4#. Unlike layered one-componen
melts, such as thermotropic smectics or diblock copolym
flow can have a significant effect on the microstructure of
layers. Although flow certainly stretches the chains
diblock copolymers@5# and can induce layer tilt in thermo
tropic smectics@6#, the effect on the highly fluctuating many
component layered surfactant phases should be much m
dramatic.

As an initial step to account for some of this flow beha
ior, we previously conjectured@7# that flow induces an effec
tive anisotropic tension parallel to the flow, when lamell
are aligned in thec orientation~Fig. 1!. The ‘‘tension’’ is a
response to projected area changes and acts to suppre
fluctuations. This led to predictions for either changes
layer spacing or an undulation instability. In a related wo
Zilman and Granek@8# also proposed an effective tensio
but isotropic, negative in sign, and of a different physic
origin. While both studies relied on inserting the ‘‘tension
heuristically into the dynamics as an effective free-ene
term, it is of interest to examine the dynamics of a membr
in flow to see how such a response can be generated dyn
cally. In this work, we consider a lamellar phase stabilized
the Helfrich interaction, neglecting the effect of electrosta
forces. By coarse-graining the dynamics up to a length s
characteristic of the long-wavelength hydrodynamic desc
tion, the typical transverse lengthLp between collisions, we
demonstrate that flow can indeed induce a dynamical s
pression of fluctuations that resembles a wave-vec
dependent ‘‘tension.’’

The linearized relaxational dynamics of a membrane
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rametrized by a single height variableh subject to an aniso-
tropic tensions, written in Fourier space, is

] th~q!52L~q!@kq41sqx
2#h~q!, ~1.1!

wherek is the bending modulus,q is the wave vector, and
the kinetic coefficientL(q) depends on the particular relax
ation mechanism. The tension penalizes fluctuations an
applied to a stack of such membranes that interact via c
sions, would change the ‘‘preferred’’ layer spacing and ren
malize the coarse-grained smectic layer compression mo
lus B̄. Our task here is to derive an equivalent term th
would contribute to the effective dynamics of highly fluct
ating membranes in shear flow in thec orientation, v
5ġzx̂. We shall find that the equation of motion for th
coarse-grained height field in shear flow becomes

] th~q!1 i ġ(
k

~qx2kx!h~k!h~q2k!

52$L~q!kq41Lxqx
2%h~q!, S q.

p

Lp
D , ~1.2!

where the functionLx depends on the wave vector, the stra
rate ġ, the kinetic coefficientL(q), and the coarse-graining
length. The nonlinear advection term, which arises from
suming an affine distortion of the membrane, induces
nontrivial renormalization of the dynamics under coars
graining. Hence, the ‘‘tension,’’ as such, is given by

FIG. 1. The allowable steady-state orientationsa and c of a
lamellar phase in uniform shear flow.
©2002 The American Physical Society06-1
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s5LxL
21~q! ~1.3!

and is a function of the strain rate and is typically wav
vector-dependent.

Our calculation is similar to renormalization-group calc
lations of the anisotropic Burgers equation, studied in
context of sandpiles@9#, and of phase separating system
under shear flow@10,11#. However, unlike the calculation o
critical behavior, in which coarse-graining proceeds un
scaling is found, coarse-graining in our case can only
performed up to the natural physical cutoff corresponding
the collision lengthLp . This may or may not be in the sca
ing regime; if it is not, then there are generally other ter
generated by the coarse-graining procedure. However, su
calculation is generally impossible, so instead we estim
the coarse-grained dynamics from that obtained by a n
trivial scaling fixed-point calculation. Moreover, we expe
that terms that eventually become irrelevant in the sca
regime are in the process of being driven close to zero at
true coarse-graining lengthLp , and in any case are of highe
wave vector and hence not present in a hydrodynamic
scription.

Our one-loop perturbation expansion of the dynam
yields, for anyL(q), a tension that scales ass;ġ2. By
considering the energetic cost involved in bending a
stretching a single membrane, Zilman and Granek@8# esti-
mated a tension~isotropic! with the same scaling. Howeve
upon performing a coarse-graining we find a dependencs

;ġ«, where« depends onL(q).
In Sec. II, we summarize single membrane relaxation

namics, discuss previous studies of the dynamics ofh and the
coarse-grained smectic displacement variableu in shear flow,
,
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and derive the equation of motion for a membrane in shea
the c orientation. In Sec. III, we outline the coarse-grainin
procedure and extract results for the renormalized dynam
for different relaxation mechanisms. We conclude in Sec.
with a discussion. The Appendices collect calculations of
permeation dynamics and the details of the renormaliza
calculation.

II. MEMBRANE DYNAMICS

A. Membrane dynamics without shear flow

First we review the equilibrium properties of a Helfrich
stabilized lamellar phase, in preparation for studying its d
namics in flow. The long-ranged entropic interaction, char
teristic of such a phase, is a consequence of collid
membranes due to thermal fluctuations. A key notion is
characteristic distanceLp between the collisions, marking
the transition in length scale between the membrane and
smectic behavior. This enables us to relate the static beha
of a single membrane at a mean layer spacing, to the com-
pression elasticity of the lamellar phase.

In general, ifh(x,t) is the height of a membrane above
plane in d-dimensional space, wherex5(x,x') is a
(d21)-dimensional vector in the plane andt is time, the
elastic free energy in the Monge gauge@^(“h)2&!1# is
given by the Helfrich Hamiltonian@1#,

H5 1
2 kE dd21x@¹2h~x!#2, ~2.1!

where the bending modulusk has dimensions of (energy
3(length)32d. For the rest of the paper we use discrete
continuous Fourier transforms as convenient,
h~x,t !55 (
q

(
v

h~q,v!ei (q•x2vt) ~discrete!

E
2`

1`dv

2pEq

dd21q

~2p!d21
h~q,v!ei (q•x2vt) ~continuous!,

~2.2!
n.
re-
-
of

tu-
cal
where q5qxx̂1q'• x̂' and v is the frequency. For clarity
we reproduce results in the rest of this section ford53 so
that x'5yŷ. In terms of the Fourier componentsh(q), the
equipartition theorem gives the equilibrium height corre
tion function ^uh(q)u2&5T/kuqu4, where we take the Boltz
mann constantkB51. The statistics of small fluctuation
with wave vectorsqLp.1 are adequately determined by th
Helfrich Hamiltonian. However, the behavior of large flu
tuations with wave vectorsqLp,1 is complicated by the
steric repulsion. Constraining the fluctuations to within
layer spacing determines the mean transverse lengthLp be-
tween collisions, which scales asLp;,Ak/T. The loss of
entropy associated with each collision contributes to the
energy change of the lamellar stack under a change of l
spacing, and hence a bulk compression modulus that sc
-

e
er
les

asB;T2/k,3 @1#. Long-wavelength (qLP,1) lamellar be-
havior is described in terms of the displacementu of the
mean layer position from its mean value, defined by

u~x,y,z5n, !5E
A(Lp)

@h~x82x,y82y!2n,#
d2x8

A~Lp!
,

~2.3!

where A(Lp) is the typical membrane area per collisio
Bulk equilibrium smectic behavior can be obtained by
moving the small-wavelength, highq, height degrees of free
domh, until a coarse-grained description entirely in terms
the long-wavelength variableu remains@12#. Our goal is to
carry out this procedure for the dynamics of a single fluc
ating membrane in flow, by coarse-graining the dynami
6-2
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description up to the collision length. A complete calculati
would naturally need to simultaneously incorporate the st
repulsion.

The relaxation dynamics of a single membrane can
described by a Langevin equation,

] th~x,t !52E d2x8L~x2x8!
dH

dh~x8,t !
1j~x,t !,

~2.4!

where the thermal noisej(q,t) describes the neglected m
croscopic degrees of freedom. The noise has zero mean
a variance given by the fluctuation dissipation theorem,

^j~q1 ,t1!j~q2 ,t2!&52TL~q1!d~q11q2!d~ t12t2!.

~2.5!

A spatial Fourier transformation gives

] th~q,t !52L~q!
dH

dh~2q!
1j~q,t !. ~2.6!

The kinetic functionL(q) depends on the details of th
fluid-membrane coupling; a general form is

L~q!5L0uqum;h21l m11uqum, ~2.7!

where the exponentm and the associated length scalel de-
pend on the relaxation mechanism.

Three relaxation mechanisms are summarized in Fig
with relaxation functions given by

L~q!;H h21q21, m521, isolated

h21zq0, m50, permeable

h21,3q2, m52, confined fluid.

~2.8!

Thin, impermeable membranes exhibit two regimes.~i! (m
521) Forq21., the membrane is damped by viscous s
vent drag. Solving the linearized Navier-Stokes equations
the solvent flow yieldsL(q)51/4hq @13#, whence iv
5kq3/4h. ~ii ! (m52) Forq21,,, solvent flow is screened
by the surrounding membranes, leading toiv5k,3q6/16h
@14#. Permeable membranes exhibit an additional regi
~iii ! (m50) For z,q21,, wherez is a permeation length
scale that depends on the size and the density of microsc
defects and membrane thickness,L(q);z/h. A simple
model of cylindrical pores~common in lamellar phases! of
width w and mean separationR leads toz;R2t/w4, wheret
is the thickness of the membrane~see Appendix A!. We may
envisage particular systems for which, at sufficiently hi

FIG. 2. Different scaling regimes for the kinetic coefficient.z is
the permeation length and« is the length at which the dynamica
description breaks down.
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permeabilitiesz21,,21 the isolated regime is excluded, an
others for whichz21,Lp

21 so that only the permeable re
gime remains.

B. Equations of motion in shear flow

1. Previous studies: Linear advection

Before we consider the dynamics of a single fluctuat
membrane in flow in thec orientation, we review the equa
tions of motion previously used to describe lamellar pha
in flow. Milner and Goulian@15# explored the stability with
respect toa and c orientations of a thermotropic smect
under flow. Since the layer fluctuations of most thermotro
systems are small relative to the length scale of the la
spacing, shear will not have a significant effect on the sh
of the layers or the internal structure. Thus the appropr
parametrization is entirely in terms of the broken symme
smectic displacement variableu(r ). In flow, this quantity
simply advects as a passive scalar. In simple shear flow w
average flow velocity parallel tox̂, and velocity gradient
direction n̂, the flow field is

v~r!5~r•n̂!ġ x̂,

n̂5cosu ẑ1sinu ŷ, ~2.9!

wheren̂5 ŷ in thea orientation andn̂5 ẑ in thec orientation.
In this case, the dynamics of the smectic phase is

S ] t2ġqxn̂•
]

]qDu~q,t !52b~q!
dF

du~q,t !
1x~q,t !,

~2.10!

whereF is the smectic free energy,x(x,t) is the noise, and
b(q) is the smectic kinetic coefficient. After minimizing a
effective free energy expanded in powers of strain rate, M
ner and Goulian showed that thea orientation is stable with
respect to thec orientation; moreover, they demonstrated th
a more rigorous calculation of the dynamic response func
incorporating nonlinear terms in the free energy exhibits
same result.

Earlier, Bruinsma and Rabin@16# studied the effect of
shear on a lyotropic smectic phase in thec orientation. In
most of their calculations they assumed that flow does
change the membrane shape and character, and hence
sidered the same passive advection ofu when calculating the
effect of shear on the smectic hydrodynamic dispersion r
tions. However, they did consider the degree to which fl
influences the microscopic height variableh, and estimated
the shear rateġc at which an affine deformation of individua
membranes leads to significant suppression of fluctuatio

ġc5
T5/2

k3/2h,3
. ~2.11!

This was obtained using, effectively, the isolated imperm
able membrane approximation (m50) for L(q).
6-3
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Finally, Ramaswamy predicted that a dilute Helfric
stabilized lamellar phase collapses when subjected to a
field v5ġyx̂ in the a orientation @17#. He considered the
motion of a membrane in shear, and argued that only
confined fluid relaxation mode (m52) is relevant for wave-
lengths less thanLp @32#:

] th1ġy]xh52L0¹2
dH
dh

1j~x,t !. ~2.12!

The linearity of the advection term leads to an analytic fo
for the height correlation that decreases with shear.
maswamy demonstrated that at a critical shear rate

ġc5
T3

k2h,3
, ~2.13!

the fluctuations are significantly suppressed, provoking
layer collapse. Experimental confirmation of this was sub
quently reported by Alkahwaji and Kellay@18#. Many other
studies have incorporated the simple advection term in
dynamics foru: for example, Cates and Milner studied th
effect of flow on the isotropic-lamellar transition@19#, and
Fredrickson studied the effect of flow on diblock lamell
phases@20#. All of these treatments are suitable if flow do
not significantly perturb the layer microstructure. In contra
the perturbation of the microstructure in thermotropic lam
lar phases was studied in Ref.@6#. In this case, shear flow
was shown to introduce a tilt in the layers of a smecticA
liquid crystal. This led to layer reorientation and the pos
bility of an instability.

2. Membrane in flow in thec orientation: Nonlinear advection

Now we consider the effect of a shear fieldv5ġzx̂ on a
fluctuating membrane in the lamellar phase in thec orienta-
tion ~Fig. 3!. If we affinely transform the membrane in
small timedt, the height field advects according to

h~x,y,t1dt !5h~x2ġzdt,y,t !⇒ ]h

]t
dt

5
]h

]x
~2ġzdt !1O~dt !2. ~2.14!

FIG. 3. A fluctuating membrane at rest~solid line! and subject to
a shear field~dashed line!.
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The key point is that, because shear is assumed to advec
membrane,z should be equal to the height fieldh. This leads
to a nonlinear advective term, so that the equation of mot
for a membrane in (d21) dimensions becomes

F] t1ġh~x,t !
]

]xGh~x,t !52E dd21x8L~x2x8!
dH

dh~x8,t !

1j~x,t ! ~2.15a!

2 ivh~q,v!1 i ġ(
V

(
k

~qx2kx!h~k,V!h~q2k,v2V!

52L~q!kq4h~q!1j~q,v!. ~2.15b!

The advective term stretches the membrane, leading to a
storing ‘‘tension.’’ In contrast, the relevant advective term f
a thermotropic in thec orientation remainsy]u/]x, because
the perturbation of the membrane structure is negligible,
undulations ofu are always presumed to be of much smal
wavelength than the layer spacing. The noise has varian

^j~x1 ,t1!j~x2 ,t2!&5D~x12x2!d~x12x2!d~ t12t2!,

~2.16a!

^j~q1 ,v1!j~q2 ,v2!&5D~q1!dd21~q11q2!d~v11v2!,

~2.16b!

D~q!52TL~q!52TL0uqum,
~2.16c!

[D0uqum, ~2.16d!

where Eq.~2.16c! is the fluctuation dissipation theorem.
A similar equation was derived for a diffuse interface b

tween phase separated domains subject to shear by Bray
co-workers@10,11#. However, there are two important differ
ences. First, the ‘‘interface’’ of a membrane in the lamel
phase is intrinsically sharp. Second, although both bend
(;q4) and surface (;q2) energies are present for a diffus
interface, at long length scales only the latter is relevant.
the other hand, surface tension is not presenta priori in
equilibrium lamellar phases, so the Helfrich Hamiltonian
dominated by the bending energy.

For no flow ġ50, the nonlinear term in Eq.~2.15b! van-
ishes and

h~q,v!5G~q,v!j~q,v!. ~2.17!

This defines the bare linear propagator, equivalent to the
earized equation of motion,

G21~q,v!52 iv1L~q!S21~q!, ~2.18!

whereS21(q)5kuqu4. The poles ofG(q,v) yield the disper-
sion relation for the decay times of height fluctuations. T
equal time height correlation function may be calculat
from
6-4
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C~q!5E
2`

` dv

2p
C~q,v! ~2.19a!

5E
2`

` dv

2p
^h* ~q,v!h~q,v!&, ~2.19b!

5TS~q!. ~2.19c!

Equations~2.15b!, ~2.16b!, and ~2.16d! define our model,
with L(q) given by Eq.~2.8!. In the next section, we exam
ine the effect of the nonlinear advective coupling on t
spectrum of height fluctuations, through its effect on the l
ear propagator.

III. COARSE-GRAINING PROCEDURE

A. Description of the problem

We wish to calculate the effective dynamical response
the height field, determined by Eq.~2.15b!, for different
models specified by the relaxation functionL(q) and hence
m. In Sec. III B below we show that a one-loop perturbati
analysis leads to a divergent response for all candidate va
for m. In order to avoid this unphysical divergence, we ap
a renormalization-group~RG! procedure in Sec. III C to
coarse-grain the system by removing the small scale
faster degrees of freedom, leaving an effective lon
wavelength theory. This procedure naturally generates a
namic response that scales asqx

2 due to the advective non
linearity, is suggestive of a tension, and restores nonsing
behavior.

In the study of dynamical critical phenomena@21#, the
description of a system is coarse-grained until fixed po
are found for which the system is self-similar. Hence, a c
dition is found on the parameters of the dynamical equati
of motion that leaves the dynamics of the height field sc
invariant. Contrary to a system at its critical point, the lam
lar system here can only be coarse-grained up to the na
physical cutoff of the collision length. However, since th
length is not necessarily in the scaling regime, such a ca
lation requires detailed knowledge of the flow equations
all new terms generated in the equation of motion, which
generally impossible. On the other hand, if the collisi
length is close to, or larger than, the wavelength at which
scaling regime applies, we may use the simpler fixed-po
calculation as a guideline to estimate the effective lo
wavelength dynamics. In fact, even if we are not in the sc
ing regime, the other terms generated by coarse-graining
of higher order in wave vector and are irrelevant at the fix
point, and are thus in the process of being driven to z
during the coarse-graining procedure. In the hydrodyna
limit, such terms are neglected.

In the following analysis, we coarse-grain the system
generate the lowest-order~in wave vector! additional term in
the equation of motion, which depends on the coar
graining lengthLp and the particular relaxation mechanis
L(q), parametrized bym. However, unless the appropria
range for the length scales of a given relaxation mechan
~see Fig. 2! encompasses the entire coarse-graining rang
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full calculation demands a more precise choice ofL(q). We
shall not attempt such a calculation, but give the results
der the assumption that a single value ofm applies through-
out the wave-vector regime of interest.

A consequence of the particular energy (;q2) intrinsic to
a diffuse interface is that Bray and co-workers were able
extract results only for ‘‘models’’m>0. In comparison, for a
fluctuating membrane (;q4), we may examine the relax
ation mechanismsm>22 including the case of an isolate
impermeable membrane that relaxes by the hydrodyna
interaction of the surrounding solvent.

B. One-loop correction toG„q,v…

We start by rewriting Eq.~2.15b! as

h~q,v!5G~q,v!Fj~q,v!2 i ġ(
V

(
k

~qx2kx!

3h~k,V!h~q2k,v2V!G . ~3.1!

Equation~3.1! is shown in Fig. 4~a!. Adding a perturba-
tion f (q,v) to Eq. ~3.1! and averaging over the stochast
noisej results in a renormalized linear propagatorGR , de-
fined by

GR~q,v!5 lim
f→0

]^h~q,v!&
] f ~q,v!

, ~3.2!

given by the Dyson equation@Fig. 4~b!# @22#,

GR~q,v!215G~q,v!212S~q,v!. ~3.3!

FIG. 4. ~a! Diagrammatic representation of Eq.~3.1!. Solid
circles d represent nonlinear vertices.~b! Dyson equation for the
renormalized propagator in terms of the bare propagator~single
lines! and the self-energy~shaded circle!. ~c! One-loop correction to
the self-energy. Open circless represent noise contractions,^jj&.
6-5
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The self-energyS(q,v) shifts the poles of the effective
propagatorGR and equivalently renormalizes the effectiv
equation of motion@Eq. ~2.18!# for the long-wavelength de
grees of freedom. The one-loop contribution to the se
energyS(q,v) @Fig. 4~c!# yields

S~q,v!52ġ2(
V

(
k

~qx2kx!G~k,V!G~q2k,v2V!

3@~qx2kx!G~2k,2V!D~k!1kxG~k2q,V2v!

3D~k2q!#. ~3.4!

A change of coordinatesk→q/21k and k→q/22k in the
first and second terms, respectively, of Eq.~3.4! gives

S~q,v!52ġ2(
V

(
k

qxS qx

2
2kxDGS q

2
2k,V D

3UGS q

2
1k,v2V D U2

D0Uq2 1kUm

, ~3.5!

shown in Fig. 4. On symmetry grounds, the self-energy
be written as

S~q,v!5a2~q,v!qx
21a4~q,v!qx

41•••, ~3.6!

in which case the renormalized propagator is given by

GR~q,v!21.2 iv1L~q!S21~q!1a2~q,v!qx
2 ~3.7!

and the associated noise correlation is

^j~q1 ,v1!j~q2 ,v2!&5@D~q1!1Dxqx
2#

3d~q11q2!d~v11v2!. ~3.8!

The effect of fluctuations on the slow hydrodynamic regim
is due to the leading long-wavelength static behavior,v
50. Hence, we expand to orderqx

2 for v→0. Note that we
implicitly ignore renormalizations of the frequency depe
dence, which should be sufficient to obtain scaling relatio

After converting the sum to a continuum integral and
tegrating out the frequencyV @Eq. ~B5! in Appendix B#, the
lowest-order term inqx that appears in the static self-ener
is

S~q,0!52ġ2qx
2 D0

2~kL0!2E0

` kd22dkSd21

~2p!d21

3F 1

4uku81m
1

2kx~kx
31kxk'

2 !

2uku121m G1O~qx
4!,

~3.9!

whereSd21 is the unit sphere surface area in (d21) dimen-
sions. For 101m2d.0, which encompasses all of our re
laxation regimesm521,0,2, this integral diverges. In fac
before changing the limits of integration in Eq.~3.4!, the
divergence in Eq.~3.4! can be traced to the second term
square brackets atq5k. That is, the divergence is actual
06170
-

n

-
s.
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independent of the lower cutoff. Such a singular respo
suggests that a description in terms of the microscopic
grees of freedom is physically inconsistent. To proceed,
note that a tensionlike termLxqx

2 added to the propagato
yields nonsingular behavior@Eq. ~B7! in Appendix B#. Fur-
thermore, we will show below that the gradual thinning
degrees of freedom during coarse-graining directly gener
terms that render the response physical@Eq. ~B8! in Appen-
dix B#. Hence, we argue that the correct physical descript
of the highly fluctuating system in shear must formally
derived by projecting out the small-scale degrees of freed
We will outline this procedure next.

C. Renormalization-group „RG… analysis

Our goal is to successively ‘‘integrate out’’ the small-sca
fast degrees of freedom from the equation of motion to yi
an effective equation of motion for the remaining lon
wavelength degrees of freedom@23#. Schematically, we can
write

h~x,t !5h.~x,t !1h,~x,t !, ~3.10!

whereh,(x,t) andh.(x,t) are, respectively, small and larg
wave-vector degrees of freedom. Upon removing the fa
h.(x,t), an effective equation of motion forh,(x,t) will be
generated. The form of the equation will differ from th
original equation because of the nonlinear advective te
which couples different modes together. Note that, genera
there are also nonlinear terms~of orderh3) due to deviations
from the Monge gauge limit and higher-order advecti
terms, but the restriction of transverse length scales to wi
a patch length ensures that we remain close to this limit. T
new equation of motion is most easily cast in terms of
renormalized propagatorGR

, of the long-wavelength degree
of freedom. As noted above, we expect the contributions
the propagator, and generally to the noise, to be even pow
in qx

2 , because of the symmetry of the nonlinearity. In t
hydrodynamic and long-wavelength limit, and indeed b
cause higher-order terms are irrelevant at the nontrivial fi
point, we focus on corrections of orderqx

2 .
Essentially there are three steps to a momentum-shell

in which, for convenience, we impose a short-wavelen
ultraviolet cutoff l in the x direction only; these are the
fluctuations directly suppressed by flow. Physically, t
original cutoff is l5p/a, wherea is of order a molecular
~surfactant! size, and we are interested in coarse-grain
from this length to some unknown length, at which nontriv
scaling behavior is seen. The steps are as follows.

~i! The first step is to divide the Brillouin zonekP@0,l#
into two parts: high wave vectorsk.P@l/b,l# to be re-
moved, and the remaining long wavelengthsk,P@0,l/b#.
The elimination of~assumed! fast modes results in an effec
tive renormalized propagatorGR

,(q,v). Since there are no
singularities in this range of integration, only finite corre
tions to the parameters result.

~ii ! After coarse-graining, the resulting equation has a c
off l/b. This difference from the original model is remove
by rescaling the length scalesx, x' , h and the time scalet.
6-6
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~iii ! Finally, we look for the fixed points of the resultin
recursion relation at which the theory is invariant under
first two steps.

This procedure generates a recursion equation that ma
used to find the behavior of the system in a scaling regi
Generally, this scaling regime corresponds to a descriptio
the system at wavelengths longer than that wavelengt
which the dynamics has effectively been driven to the fix
point. We will use this fixed point as anestimateof the
dynamics of the system at wavelengths larger than the c
sion lengthLp .

We follow Bray et al.’s study @10,11# of the influence of
shear flow on interfacial dynamics in a phase separating
tem, which is governed by square gradient terms rather t
quartic energy possessed by membranes. The scale tran
mation takes the form

x5bx8, x'5bzx'8 , h5bxh8, t5bzt8. ~3.11!

Since shear suppresses the fluctuations in thex direction, we
expect to findz<1 when the shear is relevant. We will se
that condition is only satisfied ifm>22. Since we only
consider modelsm>21, this condition is always satisfied
In such cases the transverse partq' dominatesqx in the
terms involving powers ofuqu so that the bare propagator
renormalized to

GR
21~q,v!52 iv1L~q'!S21~q'!1Lxqx

2 , ~3.12!

and the noise correlator is

^j~q1 ,v1!j~q2 ,v2!&5@D~q1'!1Dxqx
2#

3d~q11q2!d~v11v2!.

~3.13!

We have included the lowest-order correction toGR and the
noise from the nonlinearity. Applying the rescaling Eq.~3.11!
yields rescaled parameters in the equation of motion and
noise correlator,

ġ85bx1z21ġ, ~3.14a!

L85bz2(41m)zL, ~3.14b!

Lx85bz22Lx1•••, ~3.14c!

D085bz22x212mz2(d22)D0 , ~3.14d!

Dx85bz22x232(d22)zDx1•••. ~3.14e!

The parametersLx8 and Dx8 acquire perturbative correction
due to the coarse-graining step of the RG procedure. In c
trast, ġ, L, andD0 do not acquire perturbative correction
The nonrenormalizability ofġ follows from Galilean in-
variance of Eq. ~2.14!, which transformst→t1dt and
x→x1ġhdt in the equation of motion.

We first examine the linear theory to identify the critic
dimensiondc . Since there are no perturbative corrections
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a linear theory, the requirement that the exponents forb van-
ish in Eqs.~3.14b!–~3.14e! yields the conditions

z052, z05
2

m14
, x05

82m22d

2~m14!
. ~3.15!

The subscripts denote the application to the linear the
Equation~3.14a! determines the relevance of the shear ratġ
on the coarse-graining, at the trivial fixed point. From E
~3.15! we obtain x01z0215(m22d116)/@2(41m)#.
Therefore,ġ is relevant ford,dc , where

dc5
161m

2
, m>22. ~3.16!

We can coarse-grain the theory perturbatively in Four
space near the critical dimensiondc of the theory. Ford
,dc , we expect a new fixed point to appear at whichġ, L,
andD0 are nonzero. Equations~3.14a!, ~3.14b!, and~3.14d!
give the corresponding exponents exactly,

z5
3~41m!

1412m2d
, z5

3

1412m2d
, x5

82m22d

2~41m!
.

~3.17!

From Eqs.~3.15! and~3.17!, we see thatz<1 for m>22, in
which case the approximationuqu;uq'u is consistent. From
Eq. ~3.17!, we find Dx85b28/(41m)Dx , indicating thatDx

flows to zero at the fixed point~Fig. 5!.
To find the values ofLx and l at the nontrivial fixed

point, we now return to the RG procedure. Integrating E
~3.3! over the short-wavelength modes gives the equation
the effective renormalized propagator,

GR
,~q,v!215G~q,v!212S~q,v!, ~3.18!

whereS(q,v) is given in Eq.~3.5!. Then, settingb5el with
l infinitesimal, Eqs.~3.14c! and~3.18! generate a differentia
flow equation forLx ,

dLx

dl
5LxF ~z22!2 lim

q→0

1

Lxqx
2l

S~q,0!G . ~3.19!

FIG. 5. Schematic flows ofLx and Dx as a function of the
coarse-graining lengthl.
6-7
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TABLE I. Row ~2! shows the fixed points corresponding to different membrane relaxation mechanisms, given in row~1!. Row ~3! gives
the ‘‘tension,’’ defined by Eq.~1.3! as a function of the cutoff,l, and the relaxation mechanism. Rows~4! and ~5! display the results for
l21;Lp andq21;Lp;,Ak/T, respectively. Row~6! displays the critical shear rate for suppression of fluctuations.

Membrane
Isolated

(m521)
Permeable
(m50)

Confined
(m52)

~1! L(q)5L0qm 1

hq

zq0

h

d3q2

h

~2! Lx* (l,L0) a0

TlLp
6

L0k
2

ġ21O~ġ4! a1

T4/11L0
3/11

k1/11l10/11
ġ8/11 a3

T2/5L0
4/5

k1/5l4/5
ġ4/5

~3! s(l,L0 ,q) a0

TlLp
6

L0
2k2

ġ2q1O~ġ4! a1

T4/11

k1/11L0
8/11l10/11

ġ8/11q0 a3

T2/5

k1/5L0
4/5l4/5

ġ4/5q22

~4! s(Lp ,q) a0

TLp
5

k2
h2ġ2q1O~ġ4! a1

T4/11

k1/11

Lp
10/11

z8/11
h8/11ġ8/11q0 a3

T2/5

k1/5

Lp
2/5

d12/5
h4/5ġ4/5q22

~5! s(d) a0

,4

T
h2ġ21O~ġ4! a1

k4/11

T1/11

,10/11

z8/11
h8/11ġ8/11 a3

k6/5

T
,2/5h4/5ġ4/5

~6! ġc
T

h,3 F12
1
2S T

h,3D2

1•••G T3/2z

k1/2h,4

T5/2

k3/2h,3
d
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Step ~iii ! of the RG analysis consists of finding the fixe
pointsLx* for which the theory is invariant. This procedu
is carried out in Appendix B for each value ofm. Finally, we
can make contact with our original discussion of an induc
‘‘tension’’ s, and extract a tension according to Eq.~1.3!.
The results are collected in Table I. Form50 andm52, the
procedure is straightforward and the results~and Lx) are
independent of the low-k cutoff of the theory. However, for
m521 we must cut off the theory atk5p/Lp , and hence
we find a result forLx that depends onLp .

As noted in the Introduction, on the basis of estimati
the height correlation function from the first term in the pe
turbation expansion in Eq.~3.1!, we would naively expect
the ‘‘tension’’ to scale quadratically with the strain rate; th
scaling was also captured by considering the energetic
of bending and stretching a single membrane@8#. However,
an anomalous scalingLx;ġ«m,«m5” 2 is generated in the
scaling regime form50 andm52. The case ofm521 is
different. Owing to the divergence in the perpendicular
rection at the low cutoff due to the more violent fluctuatio
at long wavelengths, the scaling does not follow the expec
pattern («2152/3) of the other mechanisms. Howeve
whether accidentally or not, the first term in its power ser
satisfies«2152 so at low strain rates it cannot be consider
to exhibit anomalous scaling; in general though, contrib
tions from higher-order terms indicate that the scaling is a
anomalous.

In addition, equating bending and tension energies le
to an expression for the shear rateġc at which fluctuations
are significantly suppressed,

ġc;
T(m13)/2L0

k (m11)/2,m14
, ~3.20!
06170
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where in the casem521 there are higher-order contribu
tions, shown in Table I. If we compare the critical shear r
for isolated impermeable membrane relaxation with Brui
ma’s result@Eq. ~2.11!#, the scaling is the same apart from
factor of AT/k.

D. One-step coarse-graining

So far we have demonstrated how to calculate the n
trivial scaling behavior of the membrane, assuming that fl
tuations generate a tensionlike term that renders contr
tions to the self-energy nonsingular. Here, we show explic
how the ‘‘first step’’ of a coarse-graining procedure produc
such a term. Here we coarse-grain the system in ‘‘one ste
by making a small perturbation to the original microscop
cutoff l5p/a, wherea is a typical molecular dimension
For a small perturbation about the trivial fixed point (Lx
50), the differential flow equation~3.19! becomes

dLx.2 lim
q→0

1

qx
2

S~q,0!. ~3.21!

We show at the end of Appendix B the calculation of t
coarse-grained self-energy in the limitLx→0 @Eq. ~B20!#.
Inserting the resulting self-energy@Eq. ~B21!# into the recur-
sion relation yields an expression forLx and, via Eq.~1.3!, a
‘‘tension’’ that depends on the cutoff and the relaxati
mechanism,

s5b
T

k2L0
2l91m2d

ġ2lq2m, ~3.22!
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whereb is a numerical prefactor andl is a small number tha
depends on the chosen coarse-graining step. As expecte
all relaxation mechanisms, a first step coarse-graining le
to a ‘‘tension’’ that is the same as the naive scaling;h2ġ2.
Thus we may infer that the coarse-graining process mod
the dependence of the scaling form50, m52, and also for
m521 ~but not for very small strain rates!.

IV. RESULTS AND DISCUSSION

A. Single membrane dynamics in the scaling regime

We have considered the dynamics of a single membr
in the c orientation~Fig. 1! with respect to shear flow. Ad
vection couples different Fourier modes, and hence re
malizes the effective response. We have estimated the e
tive long-wavelength theory, which would be obtained
removing smaller and faster degrees of freedom with w
vectorsq.l, by calculating the behavior of the fluctuatin
membrane in the scaling regime. This dynamic coar
graining generates, to lowest order, a term2Lxqx

2 in the
long-wavelength propagator. This is the principal qualitat
result of this work.

The functionLx depends on wave vectorq, the quiescent
relaxation mechanismL(q), the strain rate, and the wave
vector scalel to which coarse-graining has been perform
~Appendix B!,

Lx;Amldmġ«m, ~4.1!

where m parametrizes the relaxation mechanismL(q)
5L0qm, and the constantAm depends onT,k,Lp , andL0 .
The results are summarized in Table I. This restoring term
suggestive of an anisotropic ‘‘tension’’s, which would ap-
pear in the dynamics assqx

2h,(q) @Eq. ~1.3!#, with s
5Lx /L(q), except that the nonanalytic form generally lea
to a wave-vector dependence. In the permeable limit,
wave-vector dependence is absent,m50, while in other
cases there is a wave-vector dependence. Hence, referri
the newly generated term as a tension is suggestive at
Nonetheless, this term can be expected to suppress flu
tions, and hence influence the effective collision rate, and
turn the Helfrich interaction potential, in the presence
shear flow. Elsewhere, we have used an effective energ
tension to parametrize the reduction in fluctuations and
corresponding flow-induced strain or change in layer spac
@7#.

It is important to recognize that, although the ‘‘tension’’
Table I applies, strictly, only to wavelengths of order t
collision length, it is generated at all wavelengths larger th
the smallest cutoff and grows during the coarse-graining p
cedure. In Ref.@7#, we replaced this wave-vector-depende
tension by an average value that applies for all wave vect
This certainly changes any quantitative predictions, but d
not influence the qualitative aspects of those results. T
naive estimate should evidently be replaced by a much m
sophisticated dynamic analysis that simultaneously perfo
the dynamic coarse-graining in the presence of the advec
nonlinearity and a self-consistent~or coarse-graining! proce-
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dure to recover the Helfrich interaction behavior that sta
lizes the lamellar stack. Such a calculation is beyond
scope of this work.

If the layer spacingdoesadjust in flow due to an induced
tension, a non-Newtonian response is likely to be fou
Most probably this will be shear thinning, because of t
greater local regularity of the flow, although it is not obvio
that this is the case. The magnitude of the viscous respon
a complicated balance of dissipation incurred within bila
ers, and local inhomogeneous shears due to the fluctua
layers. The single study that reported a change in layer s
ing also reported a shear thinning response@4#. Shear thin-
ning behavior has been observed in some Helfrich-stabili
systems includingC12E5 @4#, AOT @24#, and SDS@25#.

B. Effective long-wavelength dynamics

The effective long-wavelength dynamics of the sing
membrane is of the form~in Fourier space!

2 ivh,~q,v!1i ġ(
V

(
k

~qx2kx!h
,~k,V!h,~q2k,v2V!

52@L~q!kq41Lxqx
2#h,~q!1j,~q,v!, ~4.2a!

^j,~q1 ,v1!j,~q2 ,v2!&

5@D~q1!1Dxqx
2#d~q11q2!d~v11v2!, ~4.2b!

where h,(q,v) is the small wave-vector~coarse-grained!
height field, and the noisej,, in principle, incorporates the
eliminated degrees of freedom in addition to the origin
small-scale degrees of freedom. This yields a proportiona
between correlation and response, and a general
fluctuation-dissipation theorem~FDT! is satisfied, although
the simple proportionality factor of temperature relating c
relation and response is replaced by the more complica
noise correlations. In the case, which we have assumed,
the scaling limit is reached before the patch size has b
reached,Dx vanishes and an effective temperature, alb
shear-rate-dependent, can be ascribed to the system ac
ing to the fixed-point value forD.

Ideally, coarse-graining should continue until all wav
lengths less than the collision lengthLp have been removed
at which point the resulting theory would be used as a st
ing point for understanding the dynamics of the usual me
smectic layer displacementu, rather than the microscopi
membrane positionh. Note that, at this point, collisions in
tervene in a nontrivial way to limit affine layer advectio
and the coarse-grained smectic phase variableu advects ac-
cording toġy]xu rather thanġu]xu. This behavior should,
in principle, emerge smoothly in an ideal calculation.

The resulting dynamics of a strongly fluctuating layer
system in shear flow are best cast in terms of the velo
field, in the standard two-fluid form@26#, as

r~] t1v•“ !v52“p1h¹2v1n̂f n , ~4.3!
6-9
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~] t1v•“ !u5vz , ~4.4!

where we have, for convenience, shown the form in the
sence of permeation. The normal forcef n differs from the
usual normal force by the term generated upon coa
graining,

f n52F dF
du~q,t !

1
LxL

21~q!

d
qx

2u~q,t !G , ~4.5!

where the free energyF should also include the layer com
pression energy density12 B̄(]zu)2. Note the factor ofd in the
second term, reflecting the inherent three-dimensional na
of smectic elasticity. The noise defines an effective tempe
ture that is generally not the physical temperature, and m
have additional correlationsDxqx

2 that reflect the flow~de-
pending on whether or not the scaling regime has b
reached!.

The additional term is only present for strong flows, a
penalizes layer undulations in thex direction; this is because
such undulations are performed at the expense of the m
scopic height fluctuations, which are highly stretched
strong flows. This term isnot expected to appear in situation
where the microstructure of the smectic layers is essent
undisturbed by flow, as in typical thermotropic smectics~but
see the calculation of Auernhammeret al. @6# for a counter-
example!. One could also envision this term as a nonequil
rium contribution to an effective free energy, which has be
postulated by Jou and co-workers in their studies of comp
fluids using extended irreversible thermodynamics@27#;
however, the dependence on strain rate that we deriveLx

;ġ«m, is not necessarily analytic, unlike their assumption
It is important to remember that the generation of t

tension-restoring term is only one of several possible
namic effects; other effects include the rearrangement of
fect distributions, which is also likely to lead to a shear th
ning response@28#.

C. Summary

In this work, we have studied the effect of flow on th
dynamics of fluctuating membranes. We have made sev
assumptions, which we collect for completeness.

~i! We assumed that an« expansion is sufficient to de
scribe the effect of coarse-graining the theory up to the c
lision length; in this limit, the renormalized noise reduces
an effective temperature. Whether or not scaling is tr
reached is an open question. It is more likely that there
residual noise correlations when the collision length has b
reached. Moreover, the critical dimensiondc is quite high
and fluctuations are quite important; we have considerem
521,0,2, for which, respectively,dc5 15

2 ,8,9.
~ii ! Since an« expansion is not likely to hold so far from

the critical dimension, our calculation is strictly a se
consistent one-loop calculation.

~iii ! We have considered the different membrane rel
ation mechanisms~permeable, squeezing, isolated! sepa-
rately. In reality, the mechanism changes during the coa
graining process, according to Fig. 2; nonetheless, this d
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not detract from our primary message that the perturbatio
the microstructure of highly fluctuating membranes can le
to an additional restoring term in the long-wavelength d
namics.

~iv! The coarse-graining can be performed only up toLp ,
because at this length scale the long-range steric repulsio
important. In fact, we have completely ignored steric int
actions. A more precise treatment would involve simul
neously treating flow and collisions, or treating the flo
within a self-consistent scheme using, for example, a h
monic potential to mimic collisions.

The significant accomplishments of this study have be
first, a qualitative estimate of the effect of flow on high
fluctuating lamellar phases. More importantly, however,
the demonstration that flow can strongly modify the fluctu
tion spectrum and generate new effects in the macrosc
response, via an RG-like self-consistent coarse-grain
technique. The theory that emerges has a natural effec
noise that need not satisfy the usual equilibrium fluctuati
dissipation theorem. Similar renormalizations of hydrod
namic descriptions can be expected for other complex fl
systems with highly fluctuating mesoscopic degrees of fr
dom, such as wormlike micellar systems~for example, the
micellar length, modulus, and relaxation times could be
pected to renormalize due to the effect of flow on the lo
charge distribution and undulation spectra!.
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APPENDIX A: PERMEATION LENGTH SCALE

We estimate the permeation lengthz by assuming that
permeation is dominated by solvent flow through pores in
membranes; indeed, at certain surfactant concentrat
pores are very common—see, for example, the stud
@29,30#. We assume cylindrical pores of diameter 2w within
a membrane of thicknesst, separated by a mean distanceR
~Fig. 6!. We wish to derive the kinetic coefficientL0 for
layer relaxation, defined by

] th52L0

dH
dh

. ~A1!

Identifying the mean solvent flow velocitŷv& with the re-
laxation speed of the membrane] th yields

FIG. 6. Pore defects in a membrane~side view!.
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^v&;L0

dH
dh

. ~A2!

The pressure differenceDp5p12p2 driving solvent flow is
given by the force per areadH/dh that the membrane exert
on the fluid. Thus the kinetic coefficient is

L0;
^v&
Dp

. ~A3!

For each pore, the mean velocity is the flux of materialQ
flowing through a pore per unit surface area of membraneA,

^v&5
Q

A
. ~A4!

We note that in terms of permeabilityP, the flux is given by
Q/A52P¹p/h ~Darcy’s law!. ThusP.L0ht, which was
used by Leng@31# in the context of swelling compresse
lamellar phases. To calculate the flux, we assume that
pressure gradient sets up a Poiseuille flow given by the
cous flow force balance,

h
vc

w2
.

Dp

t
, ~A5!

wherevc is the velocity of the solvent at the center of th
flow, and so

Q

A
;

w4

R2t

Dp

h
. ~A6!

On substituting the expression for the mean velocity in E
~A3! by the flux in Eq.~A6!, we obtain an expression for th
kinetic coefficient

L0;
w4

tR2h
. ~A7!

Therefore, the ‘‘permeation length’’ isz5w4/(R2t).

APPENDIX B: CALCULATION OF THE SELF-ENERGY
AND THE CRITICAL POINTS FOR DIFFERENT

RELAXATION MECHANISMS

In this appendix, we calculate the coarse-grained s
energyS(q,0), which we insert into the recursion relatio
06170
he
s-

.

f-

@Eq. ~3.19!# to find the fixed pointsLx* for different values of
m. We also calculate the general expression for the s
energy, and the associatedLx derived from the recursion
relation in a ‘‘first step’’ coarse-graining process.

1. Coarse-grained self energy

After demonstrating that a naive calculation of the se
energy, equivalent toLx50, leads to a divergence, the ma
task here is to show how the divergence is eliminated
Lx5” 0, enabling us to proceed with the integration. Havi
established in Sec. III B that the self-energy@Eq. ~3.5!# can
be written in powers ofqx

2 , we commence from its expres
sion in terms of the renormalized propagator@Eq. ~3.7!# and
its corresponding noise correlation@Eq. ~3.8!#;

S~q,v!52ġ2(
V

(
k

qxS qx

2
2kxDGRS q

2
2k,V D

3UGRS q

2
1k,v2V D U2FD0Uq2 1kUm

1DxS qx

2
1kxD 2G . ~B1!

We consider the slow hydrodynamic regimev→0, and ig-
nore frequency-dependent corrections, so that

GR~q,v!21.2 iv1L~q!S21~q!1Lxqx
2 , ~B2!

where Lx[a2(q,0), L(q)5L0qm, and S21(q)5kq4. The
disregard for frequency-dependent corrections should su
to obtain scaling properties. The sums are converted to i
grals by Eq.~2.2!,

(
V

(
k

→E dV

2p E
p/Lp

p/a dd21kSd21

~2p!d21
, ~B3!

where Sn5npn/2/G(n/211) is the surface area of a
n-dimensional unit sphere and the limits ink are given by the
physical cutoffs. The first step is to perform theV integral by
contour integration, yielding a positive pole at

iV52FLxS kx1
qx

2 D 2

1kL0Uk1
q

2U
41mG ,
S~q,0!52
ġ2

2 E
0

` kd22dkSd21

~2p!d21

qxS qx

2
2kxD FD0Uk1

q

2U
m

1DxS kx1
qx

2 D 2G
FLxS kx1

qx

2 D 2

1kL0Uk1
q

2U
41mGF2LxS kx

21
qx

2

4 D 1kL0Uk1
q

2U
41m

1kL0Uk2
q

2U
41mG .

~B4!
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As we explained in Sec. III B, the leading long-waveleng
behavior arises from an expansion of Eq.~B4! to lowest
order inqx

2 , which we now investigate for the casesLx50
andLx5” 0. ForLx50, and thus alsoDx50, the self-energy
becomes

S~q,0!52ġ2qx
2 D0

2~kL0!2E0

` kd22dkSd21

~2p!d21

3F 1

4uku81m
1

2kx~kx
31kxk'

2 !

2uku121m G1O~qx
4!,

~B5!

which diverges at lowk for 101m2d.0 ~note that all re-
laxation mechanisms we consider obeym.d210). As we
discuss at the end of Sec. III B, this divergence is unphysi
Upon coarse-graining the theory, the termLxqx

2 will be gen-
erated, which obviously changes the character of the integ
Next we show that the implementation of coarse-grain
such thatLx5” 0 removes this divergence.

Following the first step of the renormalization-grou
analysis in Sec. III C, the removal of high wave vectorsk. in
the x direction in the rangele2 l,kx,l is equivalent to a
change in limits,

(
k.

→E
le2 l

l dkx

2p E
0

` dd22k'Sd22

~2p!d22
. ~B6!

Note that there is no change in the limits in the perpendicu
direction. We showed in Sec. III C that whenLx5” 0 andm
>21, we approximateuku→uk'u so that the renormalized
propagator becomes Eq.~3.12! and the noise becomes E
~3.13!. In addition, within the scaling regime or close to th
fixed point, Dx→0. With these assumptions, the resulti
approximation to the lowest order expansion of the s
energy is

S~q,0!52ġ2qx
2 D0

2 E
le2 l

l dkx

2p E
0

` k'
d23dk'Sd22

~2p!d22

3
k'

m

~Lxkx
21kL0k'

41m!2 F1

4
1

Lxkx
2

2~Lxkx
21kL0k'

41m!
G

1O~qx
4!. ~B7!

The divergence that we encountered before forLx50 is now
eliminated, which enables us to proceed with the integra
over all wave vectors in the transverse direction, in orde
calculate the self-energyS(q,0) to be inserted into the recu
sion relation@Eq. ~3.19!#.

2. Calculation of the fixed points

With the condition thatd1m22.0 ~a criterion that we
discuss later!, integration of Eq.~B7! leads to
06170
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S~q,0!522
~1412m2d!

m1102d
ULxqx

2l , ~B8!

where

U5ġ2
Sd22

8~m14!~2p!d22
GS d1m22

m14 DGS 1412m2d

m14 D
3D0~kL0!(22d2m)/(m14)Lx

(21422m1d)/(m14)

3l (2162m12d)/(m14). ~B9!

G(v) is the Gamma function and we have used

E
0

` xz21dx

~11x!z1w
5

G~z!G~w!

G~z1w!
@Re~z!.0, Re~w!.0#.

~B10!

The negative exponent ofLx in Eq. ~B9! reveals the diver-
gence established earlier and therefore reaffirms the ne
sity for coarse-graining.

Inserting the self-energy@Eq. ~B8!# into Eq. ~3.19! leads
to an expression for the recursion relation forLx , which is
most conveniently written in terms of the coupling consta
U,

dU

dl
5

161m22d

m14
U22

~1412m2d!2

~m14!~m1102d!
U2,

~B11!

where we have used Eq.~3.17! to eliminatez. Having thus
removed the high wave vectors and rescaled all the par
eters, the final step of the RG analysis is to find the fix
points of Eq.~B11! for which the theory is invariant. Con
sistent with the previous determination of the critical dime
sion, the linear term changes sign ford5dc5(161m)/2.
Since the quadratic term is negative ford,m110 ~or d
,dc for m,24), there is a nonzero stable fixed point,

U* 5
e

9~dc26!
1••• ~B12!

to first order ine, wheree5d2dc . This shows that the RG
perturbation is well-behaved and the exponents are corr
For d.dc , the only stable fixed point isU* 50, correspond-
ing to an irrelevant nonlinearity and recovering the exp
nents for the linear theory. Thus in the general case fod
1m22.0,

Lx* 5am11@T41mk22d2ml2162m12dL0
22m28

3ġ2(41m)#1/(1412m2d), ~B13!

where
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am115F 9Sd22

4~m14!~2p!d21 S 41m

161m22dDGS d1m22

m14 D
3GS 1412m2d

41m D G (41m)/(1412m2d)

. ~B14!

We may apply this result to two of the relaxation mech
nisms that we considered; both results are found in Table
Sec. IV. For the permeable case,d53 andm50,

Lx* 5a1

T4/11L0
3/11

k1/11l10/11
ġ8/11,

where

a15F 189S1

2560p2
GS 1

4DGS 3

4D G 4/11

.0.342. ~B15!

For the confined case,d53 andm52,

Lx* 5a3

T2/5L0
4/5

k1/5l4/5
ġ4/5,

where

a35F 45S1

256p2
G2S 1

2D G 2/5

.0.378. ~B16!

A similar analysis cannot be conducted for the cased
53, m521. In the hydrodynamic limit, a divergence in th
lower limit in the k' integral of Eq.~B7! occurs ford1m
22<0. By introducing a lower cutoff given by the invers
collision length of the systemLp

21 and writing the integral in
terms of the dimensionless quantityy5Lp

3Lxl
2/kL0 , the

expression for the self-energy ford53, m521 becomes

S~q,0!52
a0ġ2D0

l3Lx
3 F3S ln~y11!2

y

y11D2
y2

~y11!2G
3Lxqx

2l ,

where

a05
S1

96p2
.0.000 528. ~B17!

We now proceed as before by combining Eq.~3.19! and the
expression for the self-energy@Eq. ~B17!# to give the differ-
ential flow equation in terms ofy,

dy

dl
5yH 211

a0ġ2D0

l3 S Lp
3l2

kL0yD 3F3S ln~y11!2
y

y11D
2

y2

~y11!2G J . ~B18!
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The unstable fixed point corresponding to the irrelevant n
linearity is given byLx50. As we are unable to give a
analytic expression for the stable fixed-point solution of E
~B18!, we show instead its power series inġ2,

Lx* 5a0

TLp
6l

k2L0

ġ2F12
3

2 S a
Lp

9l3

k3L0
2D 2

ġ41O~ ġ5!G .

~B19!

Hence for small strain rates,Lx* ;ġ2.

3. First step coarse-graining

Here we demonstrate the procedure for a ‘‘first ste
coarse-graining of the self-energy in Sec. III D, i.e., we c
culate Lx by perturbing about the trivial fixed pointLx*
50. First we return to the expression for the coarse-grai
self-energy in Eq.~B4! derived from Eq.~B1!. Upon coarse-
graining in thex direction, the limits of the sum and th
integration are changed according to Eq.~B6!. However, due
to being far from the scaling regime, the assumption t
uku→uk'u no longer holds. Hence in the limitLx→0 ~and
thusDx→0) appropriate for a ‘‘first step’’ coarse-grain, th
integral becomes

S~q,0!52ġ2qx
2 D0

2~kL0!2Ele2 l

l dkx

2p E
0

` kd23dkSd22

~2p!d22

3F 1

4uku81m
1

2kx~kx
31kxk'

2 !

2uku121m G1O~qx
4! ~B20!

from which we may compute the self-energy for generalm
andd,

S~q,0!52b
T

k2L0l91m2d
ġ2qx

2l . ~B21!

b is a numerical prefactor that depends on the relaxa
mechanismm and the dimensiond,

b5
Sd22

8~2p!d21
GS d22

2 DGS 101m2d

2 D
3FGS 121m

2 D G21F5S 121m2d

2 D S 101m2d

2 D
16S d22

2 D S 101m2d

2 D1
d

2 S d22

2 D G . ~B22!

On substituting Eq.~B21! into the recursion relation for
around the trivial fixed point@Eq. ~3.21!#, we find that

dLx~ l !.b
T

k2L0l91m2d
ġ2l , ~B23!

which leads to the ‘‘tension’’ that depends on the cutoff
Eq. ~3.22!.
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