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Dynamical coarse-graining of highly fluctuating membranes under shear flow
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The effect of strong shear flow on highly fluctuating lamellar systems stabilized by intermembrane collisions
via the Helfrich interaction is studied. Advection enters the microscopic equation of motion for a single
membrane via a nonlinear coupling. Upon coarse-graining the theory for a single bilayer up to the length scale
of the collision length, at which a hydrodynamic description applies, an additional dynamical coupling is
generated which is of the form of a wave-vector-dependent tension that is nonlinear in the applied shear rate.
This new term has consequences for the effects of strong flow on the stability and dynamics of lamellar
surfactant phases.
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[. INTRODUCTION AND OVERVIEW rametrized by a single height varialiiesubject to an aniso-
tropic tensiono, written in Fourier space, is
Dilute solutions of lamellar phases typically consist of

highly fluctuating layers. The wide equilibrium layer spac- ah(@)=—A(q[kq*+ aqi]h(q), (1.0
ings are governed by the interplay between the long-range
steric repulsion, known as the Helfrich interactighi, and  where « is the bending modulugy is the wave vector, and
the bending elasticity of the bilayers. When these systemghe kinetic coefficient\ (q) depends on the particular relax-
undergo flow, a range of interesting phenomena is observe@dtion mechanism. The tension penalizes fluctuations and, if
such as transitions to multilamellar vesiclgs3] and a re-  applied to a stack of such membranes that interact via colli-
duction in layer spacin¢4]. Unlike layered one-component sions, would change the “preferred” layer spacing and renor-
melts, such as thermotropic smectics or diblock copolymersmalize the coarse-grained smectic layer compression modu-
flow can have a significant effect on the microstructure of thq s B Our task here is to derive an equivalent term that

layers. Although flow certainly stretches the chains in\yqyiq contribute to the effective dynamics of highly fluctu-
diblock copolymerd5] and can induce layer tilt in thermo- ating membranes in shear flow in the orientation, v

tropic smectic$6], the effect on the highly fluctuating many- - ~- . . .
component layered surfactant phases should be much more Y% We_shall f|_nd that the equation of motion for the
coarse-grained height field in shear flow becomes

dramatic.
As an initial step to account for some of this flow behav-
ior, we previously conjectureld] that flow induces an effec- ah(a) +i 72 (a,—k)h(K)h(g—k)
tive anisotropic tension parallel to the flow, when lamellae K
are aligned in the orientation(Fig. 1). The “tension” is a -
response to projected area changes and acts to suppress the __ 4 2 o
fluctuations. This led to predictions for either changes in {A(@xg™+ AGdh(a), (Q>L ) 2
layer spacing or an undulation instability. In a related work,
Zilman and GraneK8] also proposed an effective tension, where the function\, depends on the wave vector, the strain

but isotropic, negative in sign, and of a different physicalrate y, the kinetic coefficient\ (q), and the coarse-graining
origin. While both studies relied on inserting the “tension” |ength. The nonlinear advection term, which arises from as-
heuristically into the dynamics as an effective free-energysuming an affine distortion of the membrane, induces the
term, it is of interest to examine the dynamics of a membrangontrivial renormalization of the dynamics under coarse-
in flow to see how such a response can be generated dynamgjraining. Hence, the “tension,” as such, is given by
cally. In this work, we consider a lamellar phase stabilized by
the Helfrich interaction, neglecting the effect of electrostatic - .
forces. By coarse-graining the dynamics up to a length scale w
characteristic of the long-wavelength hydrodynamic descrip-
tion, the typical transverse lengtt), between collisions, we v
demonstrate that flow can indeed induce a dynamical sup
pression of fluctuations that resembles a wave-vector-
dependent “tension.” Yo
The linearized relaxational dynamics of a membrane pa-

S

(a) (©

*Electronic address: physwm@irc.leeds.ac.uk FIG. 1. The allowable steady-state orientaticm&nd c of a
TElectronic address: p.d.olmsted@leeds.ac.uk lamellar phase in uniform shear flow.
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o=AA"YQ) (1.3 and derive the equation of motion for a membrane in shear in
the ¢ orientation. In Sec. Ill, we outline the coarse-graining
and is a function of the strain rate and is typically wave-procedure and extract results for the renormalized dynamics,
vector-dependent. for different relaxation mechanisms. We conclude in Sec. IV
Our calculation is similar to renormalization-group calcu- with a discussion. The Appendices collect calculations of the
lations of the anisotropic Burgers equation, studied in thgermeation dynamics and the details of the renormalization
context of sandpile$9], and of phase separating systemscalculation.
under shear floW10,11]. However, unlike the calculation of
critical behavior, in which coarse-graining proceeds until Il. MEMBRANE DYNAMICS
scaling is found, coarse-graining in our case can only be
performed up to the natural physical cutoff corresponding to . o . _
the collision lengttL,. This may or may not be in the scal- First we review the equilibrium properties of a Helfrich-
ing regime; if it is not, then there are generally other termsstabilized lamellar phase, in preparation for studying its dy-
generated by the coarse-graining procedure. However, suchn@mics in flow. The long-ranged entropic interaction, charac-
calculation is generally impossible, so instead we estimatéeristic of such a phase, is a consequence of colliding
the coarse-grained dynamics from that obtained by a nonmembranes due to thermal fluctuations. A key notion is the
trivial scaling fixed-point calculation. Moreover, we expect characteristic distance, between the collisions, marking
that terms that eventually become irrelevant in the scalinghe transition in length scale between the membrane and bulk
regime are in the process of being driven close to zero at theémectic behavior. This enables us to relate the static behavior
true coarse-graining length,, and in any case are of higher of a single membrane at a mean layer spadirg the com-
wave vector and hence not present in a hydrodynamic depression elasticity of the lamellar phase.
scription. In general, ifh(x,t) is the height of a membrane above a
Our one-loop perturbation expansion of the dynamicsplane in d-dimensional space, where=(x,x,) is a
yields, for anyA(q), a tension that scales as~y2. By (d—})-dimensional \_/ector in the plane ands Ztlme, the
considering the energetic cost involved in bending ancelastic free energy in the Monge gaufgVh)9)<1] is
stretching a single membrane, Zilman and Graf@kesti-  9iven by the Helfrich Hamiltoniaf1],
mated a tensiofiisotropig with the same scaling. However,
upon performing a coarse-graining we find a dependence H:%KJ d9Ix[V2h(x)]?, (2.1
~y*, wheres depends on\ (g).
In Sec. Il, we summarize single membrane relaxation dywhere the bending modulus has dimensions of (energy)
namics, discuss previous studies of the dynamidsaifd the X (lengthf 9. For the rest of the paper we use discrete or
coarse-grained smectic displacement variatiteshear flow,  continuous Fourier transforms as convenient,

A. Membrane dynamics without shear flow

> 2 h(ge)e@xe (discrete
q w
h(x.t)= 2.2

+oodw dd*lq '
P - i(g-x— wt) t ,
f_m waq (Zw)d—lh(q’w)e (continuou$

where q=g,x+9, -X, and o is the frequency. For clarity, asB~T?«¢*[1]. Long-wavelength {Lp<1) lamellar be-
we reproduce results in the rest of this sectionder3 so  havior is described in terms of the displacemenof the
thatx, =yy. In terms of the Fourier componenit¢q), the =~ Mean layer position from its mean value, defined by
equipartition <t|heor<|ezr;1 give|s |t£1e equilibrium height correla- 2,
tion function(|h(q)|°)=T/«|q|*, where we take the Boltz- _ _ F oy )

mann constankg=1. The statistics of small fluctuations ux.y.z=n¢) fA(Lp)[h(X xy'=y) n(f]A(Lp)'

with wave vectorgiL,>1 are adequately determined by the 2.3
Helfrich Hamiltonian. However, the behavior of large fluc-

tuations with wave vectorglL,<1 is complicated by the where A(L,) is the typical membrane area per collision.
steric repulsion. Constraining the fluctuations to within aBulk equilibrium smectic behavior can be obtained by re-
layer spacing determines the mean transverse lelngthe- ~ moving the small-wavelength, high height degrees of free-
tween collisions, which scales as,~¢+«/T. The loss of ~domh, until a coarse-grained description entirely in terms of
entropy associated with each collision contributes to the fre¢he long-wavelength variable remains[12]. Our goal is to
energy change of the lamellar stack under a change of layearry out this procedure for the dynamics of a single fluctu-
spacing, and hence a bulk compression modulus that scale§ing membrane in flow, by coarse-graining the dynamical
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Confined Fluid Isolated | Femedble permeabilities, 1< ¢ ! the isolated regime is excluded, and
| 1 | 1 | 1 | 1 ! others for which; 1< L;l so that only the permeable re-
Ly - - e- . .

P oaw=dtm T A=t T A@=Un gime remains.

FIG. 2. Different scaling regimes for the kinetic coefficiefiis
the permeation length and is the length at which the dynamical
description breaks down. 1. Previous studies: Linear advection

B. Equations of motion in shear flow

Before we consider the dynamics of a single fluctuating
membrane in flow in the orientation, we review the equa-
Sions of motion previously used to describe lamellar phases
in flow. Milner and Goulian15] explored the stability with
?espect toa and c orientations of a thermotropic smectic
under flow. Since the layer fluctuations of most thermotropic
systems are small relative to the length scale of the layer

Jh(x,t) = _J 42 A (X—X") oH +E(xL) spacing, shear will not have a significant effect on the shape
0= ( sh(x’,t) X0, of the layers or the internal structure. Thus the appropriate
(2.4 parametrization is entirely in terms of the broken symmetry
smectic displacement variablg(r). In flow, this quantity
where the thermal noisé(q,t) describes the neglected mi- simply advects as a passive scalar. In simple shear flow with

croscopic degrees of freedom. The noise has zero mean aagerage flow velocity parallel ta, and velocity gradient
a variance given by the fluctuation dissipation theorem, directionn. the flow field is

description up to the collision length. A complete calculation
would naturally need to simultaneously incorporate the steri
repulsion.

described by a Langevin equation,

(£(01.11) £(Gp 1) = 2TA(Gr) S(cy +6p) (11— ). (=(r AR

(2.9
A spatial Fourier transformation gives n=cos6z+sin 6y, (2.9
B oH wheren=y in thea orientation andi=z in the c orientation.
ah(a.)=—-A(Q sh(—q) &g 2.6 In this case, the dynamics of the smectic phase is
The kinetic functionA(q) depends on the details of the .o~ 0 OF
fluid-membrane coupling; a general form is dy— yOxn- 9 u(g,t)= _’B(Q)—é‘u(q,t) +x(a,t),

(2.10

_ where F is the smectic free energy,(x,t) is the noise, and
where the exponenh and the associated length scélde-  g(q) is the smectic kinetic coefficient. After minimizing an

A(g)=Aold ™~ 7 ™ g™, (2.7

pend on the relaxation mechanism. effective free energy expanded in powers of strain rate, Mil-
Three relaxation mechanisms are summarized in Fig. er and Goulian showed that theorientation is stable with
with relaxation functions given by respect to the orientation; moreover, they demonstrated that
L . a more rigorous calculation of the dynamic response function
7 'q”', m=-1, isolated incorporating nonlinear terms in the free energy exhibits the

Ala)~4 n7%q® m=0, ermeable 2g  same result.
(@ n_ling P @8 Earlier, Bruinsma and Rabifil6] studied the effect of
7 ,

shear on a lyotropic smectic phase in therientation. In

o . o most of their calculations they assumed that flow does not
Thin, |mperrl1?able membranes exhibit two regim@s(m  change the membrane shape and character, and hence con-
=—1) Forq™ ">{ the membrane is damped by viscous sol-gjjered the same passive advectiom efhen calculating the

vent drag. Solving the linearized Navier-Stokes equations fogffect of shear on the smectic hydrodynamic dispersion rela-
the golven.t. flow yieldsA(q)=1/4nq [13], whenceiw  tions. However, they did consider the degree to which flow
=xQ°/47. (i) (m=2) Forq™*<¢, solvent flow is screened influences the microscopic height variattieand estimated

: o 346 .
by the surrounding membranes, leadingia=«("q"/167 0 shoar rate, at which an affine deformation of individual

[14]. Permeable membranes exhibit an additional regime L . :
(iil) (m=0) For7<q-1<¢ where{ is a permeation length membranes leads to significant suppression of fluctuations,

scale that depends on the size and the density of microscopic
defects and membrane thicknes&(q)~¢/7n. A simple
model of cylindrical poregcommon in lamellar phasgef
width w and mean separatiddleads to ~R?7/w*, wherer

is the thickness of the membrafsee Appendix A We may  This was obtained using, effectively, the isolated imperme-
envisage particular systems for which, at sufficiently highable membrane approximatiom&0) for A(q).

m=2, confined fluid.

T5/2

Vo= ——. (2.11)
Ye K3/277€3
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2R The key point is that, because shear is assumed to advect the
membranez should be equal to the height figdhd This leads
to a nonlinear advective term, so that the equation of motion
/ ; // / wesyt) TA for a membrane ind—1) dimensions becomes
7 M . " ;
P / / a+ yh(x,t) —|h x,t):—f dO I A (X—X") ———
/- M /ﬁ/b o+ y X ( Sh(x' 1)
‘T +E(x,t) (2.153
FIG. 3. Afluctuating membrane at resblid line) and subject to ) .
a shear fielddashed ling —iwh(qw)+i 7% Ek (qy—koh(k,Q)h(g—k,0—Q)
Finally, Ramaswamy predicted that a dilute Helfrich- =—A(q)xkq*h(q) + &(g, ). (2.15h

stabilized lamellar phase collapses when subjected to a flow

field v=yyx in the a orientation[17]. He considered the The advective term stretches the membrane, leading to a re-
motion of a membrane in shear, and argued that only thetoring “tension.” In contrast, the relevant advective term for
confined fluid relaxation moden(=2) is relevant for wave- a thermotropic in the orientation remainyJdu/dx, because
lengths less thah , [32]: the perturbation of the membrane structure is negligible, and
undulations ofu are always presumed to be of much smaller

. SH wavelength than the layer spacing. The noise has variance
dh+ yyah= —AOVZE—%g(X,t). (2.12
(&(x1,t1)E(Xa,t2)) = DXy = Xz) 8(X1— Xo) 8(t1 — t5),

The linearity of the advection term leads to an analytic form (2.163
for the height correlation that decreases with shear. Ra- _ -1
maswamy demonstrated that at a critical shear rate (€(01,@1)£(Gp,w2)) =D(c) & (e + Gp) S(ws + (1()22)i6b

. T D(6)=2TA(q)=2TAq™,

Yo 2 (2.13 (2.160

the fluctuations are significantly suppressed, provoking a
layer collapse. Experimental confirmation of this was subse- . . o
quently reported by Alkahwaji and Kelldyl8]. Many other where Eq.(2.169 is the fluctuation dissipation theorem.

studies have incorporated the simple advection term in thtta AS|mr|]Iar equatlontV\(/jaz derlyed fotr).a ?'?usﬁ mtetr)facée be- d
dynamics foru: for example, Cates and Milner studied the ween phase separated domains subject to shear by Bray an

effect of flow on the isotropic-lamellar transitidi9], and co-workerd10,11. However, there are two important differ-

Fredrickson studied the effect of flow on diblock lamellar €M¢€S- _F'TSt’_th? interface” of a membrane in the 'ame”?“
phaseg20]. All of these treatments are suitable if flow does phas4e Is intrinsically s?arp. Second, although both bending
not significantly perturb the layer microstructure. In contrast,.(:q f) and tslurfacle(vcih) entlarg|eslar$] prle'tsten§ for Ia d'mtjsg
the perturbation of the microstructure in thermotropic Iamel-![?] er "’t‘ﬁe' ‘1 ogg enfg S(t:a es only et atter is relevant. n
lar phases was studied in R¢6]. In this case, shear flow € othér hand, surlace tension 1S no preszermrl_on n—
was shown to introduce a tilt in the layers of a smedtic- eqU|!|br|um lamellar phqses, so the Helfrich Hamiltonian is
liquid crystal. This led to layer reorientation and the possi-dommatecj by t'he bending er.1ergy. .
bility of an instability. For no flow y=0, the nonlinear term in Eq2.15h van-
ishes and

2. Membrane in flow in thec orientation: Nonlinear advection

_ . h(g,@)=G(q,w)é(0,w). (2.17)
Now we consider the effect of a shear fieleF yzx on a
fluctuating membrane in the lamellar phase in therienta-  Thjs defines the bare linear propagator, equivalent to the lin-
tion (Fig. 3). If we affinely transform the membrane in a earized equation of motion,
small time ét, the height field advects according to

G Hqw)=—iw+A(QS 0, (2.18

i ah

h(xyt+ o) =h(x=yzdt,y,t)= o whereS™1(qg) = «|q|*. The poles of5(q, ) yield the disper-
sion relation for the decay times of height fluctuations. The
dh (2.14 equal time height correlation function may be calculated

— 2
0X( vz6t)+ O(dt)“. from
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© daw (@) E(kQ)
C(a)= J 77C(G0) (2.199
o h(q,0) G(q.0) &q.0) G(q.0) h(kQ)
d - +
* lw h(q-k 0-Q )
=J —(h*(g,w)h(q,w)), (2.19n : Y
_ 2T — & q,-k)
E(q-k,0-Q )
=TSq). (2199 ®
Equations(2.15h, (2.16b, and (2.169 define our model, _ 4

with A(qg) given by Eq.(2.9). In the next section, we exam-
ine the effect of the nonlinear advective coupling on the
spectrum of height fluctuations, through its effect on the lin-
ear propagator.

G(a.0) G(q,00) G(q,0) Z(q.m) G{q,)

©

Q - — Q
IIl. COARSE-GRAINING PROCEDURE qu’?/o\\(jn"k)’ @<

A. Description of the problem = ¢ ®

q,0 q,® q,® q/2-k,Q q,®

We wish to calculate the effective dynamical response of
the height field, determined by E@2.150, for different FIG. 4. (a) Diagrammatic representation of E.1). Solid
models specified by the relaxation functidr{g) and hence circles..represent nonlingar verticegh) Dyson equation fpr the
m. In Sec. I1l B below we show that a one-loop perturbationfénormalized propagator in terms of the bare propagetimgle
analysis leads to a divergent response for all candidate valudges and the self-energishaded circle (c) One-loop correction to
for m. In order to avoid this unphysical divergence, we applythe self-energy. Open circl€s represent noise contractiofg.£).
a renormalization-grougRG) procedure in Sec. IlIC to
coarse-grain the system by removing the small scale anflll calculation demands a more precise choice\gf)). We
faster degrees of freedom, leaving an effective longshall not attempt such a calculation, but give the results un-
wavelength theory. This procedure naturally generates a dyder the assumption that a single valuenofipplies through-
namic response that scales qisdue to the advective non- out the wave-vector regime of interest.
linearity, is suggestive of a tension, and restores nonsingular A consequence of the particular energyd?) intrinsic to
behavior. a diffuse interface is that Bray and co-workers were able to

In the study of dynamical critical phenomefp2l], the  extract results only for “modelsin=0. In comparison, for a
description of a system is coarse-grained until fixed pointdluctuating membrane~q*), we may examine the relax-
are found for which the system is self-similar. Hence, a conation mechanisma= — 2 including the case of an isolated
dition is found on the parameters of the dynamical equationgmpermeable membrane that relaxes by the hydrodynamic
of motion that leaves the dynamics of the height field scalénteraction of the surrounding solvent.
invariant. Contrary to a system at its critical point, the lamel-
lar system here can only be coarse-grained up to the natural B. One-loop correction to G(q, w)
physical cutoff of the collision length. However, since this
length is not necessarily in the scaling regime, such a calcu-
lation requires detailed knowledge of the flow equations for
all new terms generated in the equation of motion, which is h(g,w)=G(q,w)
generally impossible. On the other hand, if the collision
length is close to, or larger than, the wavelength at which the
scaling regime applies, we may use the simpler fixed-point Xh(k,Q)h(gq— k,w—Q)} (3.)
calculation as a guideline to estimate the effective long-
wavelength dynamics. In fact, even if we are not in the scal- Equation(3.1) is shown in Fig. 4a). Adding a perturba-
ing regime, the other terms generated by coarse-graining at®n f(d,) to Eq. (3.1) and averaging over the stochastic
of higher order in wave vector and are irrelevant at the fixed10ise ¢ results in a renormalized linear propaga@g, de-
point, and are thus in the process of being driven to zerdined by
during the coarse-graining procedure. In the hydrodynamic

We start by rewriting Eq(2.15h as

f(q,an—i'@ Ek (ax—ky)

limit, such terms are neglected. h
. . : __d(h(q,w))

In the following analysis, we coarse-grain the system to Gr(Q,0)=lim———, (3.2
generate the lowest-ordén wave vector additional term in -0 9T(Q®)
the equation of motion, which depends on the coarse-
graining lengthL , and the particular relaxation mechanism _. P
A(q), parametrized byn. However, unless the appropriate given by the Dyson equatidiiig. 4b)] [22],
range for the length scales of a given relaxation mechanism
(see Fig. 2 encompasses the entire coarse-graining range, a Gr(g,0) '=G(qw) 1-3(qw). (3.3
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The self-energy2(q,w) shifts the poles of the effective independent of the lower cutoff. Such a singular response
propagatorGg and equivalently renormalizes the effective suggests that a description in terms of the microscopic de-
equation of motiofEq. (2.18] for the long-wavelength de- grees of freedom is physically inconsistent. To proceed, we
grees of freedom. The one-loop contribution to the self-note that a tensionlike term g2 added to the propagator

energy2 (q,w) [Fig. 4(c)] yields yields nonsingular behavidiEg. (B7) in Appendix B|. Fur-
thermore, we will show below that the gradual thinning of
S(qw)=— 722 2 9=k )G(k,Q)G(g—k wo—Q) degrees of freedom during coarse-graining directly generates

terms that render the response physjéal. (B8) in Appen-
dix B]. Hence, we argue that the correct physical description
X[(ax—k)G(=k,=Q)D(K) +kG(k=q,Q—w)  of the highly fluctuating system in shear must formally be
_ derived by projecting out the small-scale degrees of freedom.
X . .
Dk=a)] 34 We will outline this procedure next.

A change of coordinatek—g/2+k and k—g/2—k in the
first and second terms, respectively, of E84) gives C. Renormalization-group (RG) analysis
2(g,w)=— 722 2 qx(% —ky|G fast degrees of freedom from the equation of maotion to yield
@k an effective equation of motion for the remaining long-

m wavelength degrees of freedd®@3]. Schematically, we can
, (3.5 write

( q ) Our goal is to successively “integrate out” the small-scale
k,Q

2

q
§+k,w_Q>

2k

x|G o5

h(x,t)=h~(x,t) +h=(xt), 3.1
shown in Fig. 4. On symmetry grounds, the self-energy can (1) (xb) (x.t) (3.10

be written as .
whereh=(x,t) andh”(x,t) are, respectively, small and large

= 24 44 ) wave-vector degrees of freedom. Upon removing the faster
2(0,0)=2(q )t ay(q @) oy ’ (36 h~(x,t), an effective equation of motion fdr=(x,t) will be
in which case the renormalized propagator is given by generated. The form of the equation will differ from the
original equation because of the nonlinear advective term,
Gr(G,0) '=—iw+A(Q)S (g +axqw)a; (3.7  which couples different modes together. Note that, generally,
there are also nonlinear terrtaf orderh®) due to deviations

and the associated noise correlation is from the Monge gauge limit and higher-order advection
terms, but the restriction of transverse length scales to within
— 2 ’
(€01, @1) £(G,@2)) = [D () + D] a patch length ensures that we remain close to this limit. The

X 8(Qy+ ) 8w+ w,). (3.8  New equation of motion is most easily cast in terms of the
renormalized propagat@g of the long-wavelength degrees
The effect of fluctuations on the slow hydrodynamic regimeof freedom. As noted above, we expect the contributions to
is due to the leading long-wavelength static behavior, the propagator, and generally to the noise, to be even powers
=0. Hence, we expand to ordgf for w—0. Note that we in g2, because of the symmetry of the nonlinearity. In the
implicitly ignore renormalizations of the frequency depen-hydrodynamic and long-wavelength limit, and indeed be-
dence, which should be sufficient to obtain scaling relationscause higher-order terms are irrelevant at the nontrivial fixed
After converting the sum to a continuum integral and in-point, we focus on corrections of ordgf .

tegrating out the frequend [Eq. (B5) in Appendix B], the Essentially there are three steps to a momentum-shell RG

lowest-order term irg, that appears in the static self-energy in which, for convenience, we impose a short-wavelength

is ultraviolet cutoff A in the x direction only; these are the
fluctuations directly suppressed by flow. Physically, the

> , Do = kd72dkS;_; original cutoff ish=/a, wherea is of order a molecular
2(9,00=—v qx2 A Zjo 5myd-1 (surfactant size, and we are interested in coarse-graining
(o) (2m) from this length to some unknown length, at which nontrivial
1 2k (K3+k kz)] \ scaling behavior is seen. The steps are as follows.
(ay)

(i) The first step is to divide the Brillouin zorles [0\ ]

into two parts: high wave vectors”™ e[\/b,\] to be re-
(3.9 moved, and the remaining long wavelengtise [O\/b].

The elimination of(assumegfast modes results in an effec-
whereS,_ is the unit sphere surface area 1) dimen- tive renormalized propagatdy(g,»). Since there are no
sions. For 18- m—d>0, which encompasses all of our re- singularities in this range of integration, only finite correc-
laxation regimesn= —1,0,2, this integral diverges. In fact, tions to the parameters result.
before changing the limits of integration in E¢B.4), the (i) After coarse-graining, the resulting equation has a cut-
divergence in Eq(3.4) can be traced to the second term in off A/b. This difference from the original model is removed
square brackets a=Kk. That is, the divergence is actually by rescaling the length scalgs x, , h and the time scale

X +
4|k|8+m 2|k|12+m
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(iii) Finally, we look for the fixed points of the resulting

recursion relation at which the theory is invariant under the A SO S
first two steps. A
This procedure generates a recursion equation that may be A

used to find the behavior of the system in a scaling regime.
Generally, this scaling regime corresponds to a description of
the system at wavelengths longer than that wavelength at
which the dynamics has effectively been driven to the fixed
point. We will use this fixed point as aestimateof the
dynamics of the system at wavelengths larger than the colli-
sion Iengtth. Trivial Fixed Point A

We follow Bray et al’s study[10,11] of the influence of Fixed Point x
shear flow on interfacial dynamics in a phase separating sys- , )
tem, which is governed by square gradient terms rather than FIG. 5._S_,chemat|c flows ofx and D, as a function of the
quartic energy possessed by membranes. The scale transf§parse-graining lengtk.
mation takes the form

Scaling
Regime

a linear theory, the requirement that the exponent® feain-
x=bx', x,=b%|, h=bXh’, t=b%’. (3.1) ish in Egs.(3.14h—(3.14¢ yields the conditions

Since shear suppresses the fluctuations inttieection, we 2022, ¢ 2 _8-m-2d (3.15
expect to find/<1 when the shear is relevant. We will see 074 0T g XD 2(m+4) ° '
that condition is only satisfied ifn=—2. Since we only
consider modelsn=— 1, this condition is always satisfied. The subscripts denote the application to the linear theory.
In such cases the transverse part dominatesqy in the  Equation(3.143 determines the relevance of the shear pate
terms involving powers ofg| so that the bare propagator is on the coarse-graining, at the trivial fixed point. From Eq.
renormalized to (3.19 we obtain yo+2zo—1=(m—2d+16)/[2(4+m)].

_ . _ Therefore,y is relevant ford<d,, where
Grigw)=—iw+A(q)S Nq)+A02, (3.12 Y c
and the noise correlator is o= 16;Lm,
(€(01,01) (0, @2)) =[D (01, ) + Dyaly] _ N _
We can coarse-grain the theory perturbatively in Fourier
X 8(gy+ ) 8(w1+ w5). space near the critical dimensiahy of the theory. Ford
(3.13 <d., we expect a new fixed point to appear at whighA ,
andD, are nonzero. Equatior(8.143, (3.14h, and(3.149d
We have included the lowest-order correctiorGg and the  give the corresponding exponents exactly,
noise from the nonlinearity. Applying the rescaling E8.11)

m=—2. (3.1

yields rescaled parameters in the equation of motion and the 3(4+m) 3 8—m-—2d
noise correlator, = Tatom—d’ ¢ 1ar2m-d’ X" 20a+m)
) : (3.17
y' =bxtz 1y, (3.143
From Egs(3.195 and(3.17), we see that<1 form=—2, in
A’ =b* (FMIA (3.14b  which case the approximatidi| ~|q, | is consistent. From
Eq. (3.17, we find D,=b~¥“*Mp_ indicating thatD,
Ay=b"" A+, (3.140  flows to zero at the fixed poir(Fig. 5).
To find the values ofA, and \ at the nontrivial fixed
Dy=Db? 2x-1-mi=(d=2)p (3.149  point, we now return to the RG procedure. Integrating Eq.
(3.3 over the short-wavelength modes gives the equation for
D,=b?"2x"37(0=2)p ..., (3.149 the effective renormalized propagator,
The parameterd., andD, acquire perturbative corrections Gr(g ) '=G(qw) 1-3(qw), (3.18

due to the coarse-graining step of the RG procedure. In con-

trast, y, A, andD, do not acquire perturbative corrections. Where2 (g, o) is given in Eq.(3.5. Then, setting=e€' with

Th(—j; nonrenormalizability o.f'y follows from Galilean in- :‘I(I)r\]/]:/meltqejzlart?gr!’ E)?i(3.l4c) and(3.19 generate a differential

variance of Eq.(2.14), which transformst—t+ 6t and X

X— X+ @zhﬁt in th_e equati_on of motion. _ _ N dA
We first examine the linear theory to identify the critical X

dimensiond,. . Since there are no perturbative corrections to di

—A,| (z—2)—lim lZIE(q,O). (3.19

q—0 AxQy
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TABLE I. Row (2) shows the fixed points corresponding to different membrane relaxation mechanisms, giver(1n. iRaw (3) gives
the “tension,” defined by Eq(1.3) as a function of the cutoffy, and the relaxation mechanism. Ro¥s and(5) display the results for
)\’1~Lp andq’1~Lp~€ VkIT, respectively. Row6) displays the critical shear rate for suppression of fluctuations.

Isolated Permeable Confined
Membrane (m=-1) (m=0) (m=2)
0 32
0 A(Q)=Aoq™ * a da”
7 ] 7
T)\LG ) ) T4/11A3/11 ) T2/5A4/5 )
* p A 0 8/11 0 a5
@ A\ Ao) % Agi Y+0(y) * PEVENETES Y 3 L5\ 415 Y
6 4/11 2/5
: ) T . T .
3 a(\,Ag,q) ag—— Yq+0() oo Y U
A(Z) Kl/llAO )\lOIll K1/5A0 5)\4/5
TLS ) ) -|-4/11 Llolll ) -I-2/5 L2I5 )
(4 a(Ly.q) a072p PYA+0(Y) @ e ;3/11 8/11),8/130 QSFS dlpz - 753452
{4 ) . K4/11 €10/11 . KG/S .
(5) o(d) o 772},2 +0( )/4) @ = gS/ll 7]8/11,)/8/11 a3 €2/57]4/574/5
2 T5/2
(6) Ye L 1— %(l } L’Z{ 32703
77€3 7]€3 Kl/27]€4

Step (iii) of the RG analysis consists of finding the fixed where in the casen=—1 there are higher-order contribu-
points A} for which the theory is invariant. This procedure tions, shown in Table I. If we compare the critical shear rate
is carried out in Appendix B for each value wf Finally, we  for isolated impermeable membrane relaxation with Bruins-
can make contact with our original discussion of an inducedna’s resulfEq. (2.11)], the scaling is the same apart from a
“tension” ¢, and extract a tension according to EG.3). factor of \T/«.
The results are collected in Table I. For=0 andm=2, the
procedure is straightforward and the resulémd A,) are
independent of the low-cutoff of the theory. However, for
m=—1 we must cut off the theory &= =/L,, and hence So far we have demonstrated how to calculate the non-
we find a result forA, that depends ob . trivial scaling behavior of the membrane, assuming that fluc-
As noted in the Introduction, on the basis of estimatingtuations generate a tensionlike term that renders contribu-
the height correlation function from the first term in the per-tions to the self-energy nonsingular. Here, we show explicitly
turbation expansion in Ed3.1), we would naively expect how the “first step” of a coarse-graining procedure produces
the “tension” to scale quadratically with the strain rate; this such a term. Here we coarse-grain the system in “one step,”
scaling was also captured by considering the energetic cosly making a small perturbation to the original microscopic
of bending and stretching a single membrg8k However, cutoff A= =/a, wherea is a typical molecular dimension.
an anomalous scaling,~ :ysm’sm:,éz is generated in the For a small perturbation about the trivial fixed point(
scaling regime fom=0 andm=2. The case on=—1is  =0), the differential flow equatiof3.19 becomes
different. Owing to the divergence in the perpendicular di-
rection at the low cutoff due to the more violent fluctuations
at long wavelengths, the scaling does not follow the expected
pattern €_,=2/3) of the other mechanisms. However,
whether accidentally or not, the first term in its power series
satisfiess ;=2 so at low strain rates it cannot be consideredwe show at the end of Appendix B the calculation of the
to exhibit anomalous scaling; in general though, contribucoarse-grained self-energy in the limit,—0 [Eqg. (B20)].
tions from higher-order terms indicate that the scaling is alsanserting the resulting self-energq. (B21)] into the recur-
anomalous. sion relation yields an expression far, and, via Eq(1.3), a
In addition, equating bending and tension energies leadgension” that depends on the cutoff and the relaxation
to an expression for the shear ra'gtg at which fluctuations mechanism,
are significantly suppressed,

D. One-step coarse-graining

1
dA,=—lim = 3(q0). (3.21)
g—0 Oy

T(m+3)127 T S
o (3.20 o=8 AL 322

Ve mDizgmea’ A2
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whereg is a numerical prefactor arlds a small number that dure to recover the Helfrich interaction behavior that stabi-
depends on the chosen coarse-graining step. As expected, fares the lamellar stack. Such a calculation is beyond the
all relaxation mechanisms, a first step coarse-graining leadscope of this work.

to a “tension” that is the same as the naive scaling?®y>. If the layer spacingioesadjust in flow due to an induced

Thus we may infer that the coarse-graining process modifietension, a non-Newtonian response is likely to be found.

the dependence of the scaling for=0, m=2, and also for Most probably this will be shear thinning, because of the
m=—1 (but not for very small strain ratgs greater local regularity of the flow, although it is not obvious

that this is the case. The magnitude of the viscous response is
a complicated balance of dissipation incurred within bilay-
IV. RESULTS AND DISCUSSION ers, and local inhomogeneous shears due to the fluctuating
layers. The single study that reported a change in layer spac-
] ) ] ing also reported a shear thinning respof¥k Shear thin-
We have considered the dynamics of a single membrangjng pehavior has been observed in some Helfrich-stabilized

in the ¢ orientation(Fig. 1) with respect to shear flow. Ad- systems including ,,Es [4], AOT [24], and SDY25].
vection couples different Fourier modes, and hence renor-

malizes the effective response. We have estimated the effec-
tive long-wavelength theory, which would be obtained by B. Effective long-wavelength dynamics
removing smaller and faster degrees of freedom with wave The effective long-wavelength dynamics of the single
vectorsq>N\, by calculating the behavior of the fluctuating . omprane is of the forrtin Fourier space
membrane in the scaling regime. This dynaaniC coarse-
graining generates, to lowest order, a term\,q; in the ] .
long-wavelength propagator. This is the principal qualitative_""h<(qv“’)+' 7%: Ek: (ae—koh= (k. Q)™ (a—k 0= Q)
result of this work.

The functionA, depends on wave vectqgy the quiescent =—[A()kq*+A,q21h=(q) + £~(q, o), (4.29
relaxation mechanism (q), the strain rate, and the wave-
vector scalex to which coarse-graining has been performed
(Appendix B, (£7(01,01) €7 (0, 07))

Ay~ A\ Onyem, 4.1) =[D(qy) +D,a3]8(0y + ) (w1 + wp), (42D

A. Single membrane dynamics in the scaling regime

where m parametrizes the relaxation mechanisi(q) where h=(qg,w) is the small wave-vectofcoarse-grained
=Aoq™, and the constark,, depends o, x,L,, andAy. height field, and the nois&~, in principle, incorporates the
The results are summarized in Table I. This restoring term i€liminated degrees of freedom in addition to the original
suggestive of an anisotropic “tensiors, which would ap- small-scale degrees of freedom. This yields a proportionality
pear in the dynamics asrq)z(h<(q) [Eg. (1.9)], with o between correlation and response, and a generalized
=A,/A(0), except that the nonanalytic form generally leadsfluctuation-dissipation theorerfFDT) is satisfied, although
to a wave-vector dependence. In the permeable limit, théhe simple proportionality factor of temperature relating cor-
wave-vector dependence is absemt=0, while in other relation and response is replaced by the more complicated
cases there is a wave-vector dependence. Hence, referringheise correlations. In the case, which we have assumed, that
the newly generated term as a tension is suggestive at be#e scaling limit is reached before the patch size has been
Nonetheless, this term can be expected to suppress fluctuegached,D, vanishes and an effective temperature, albeit
tions, and hence influence the effective collision rate, and irshear-rate-dependent, can be ascribed to the system accord-
turn the Helfrich interaction potential, in the presence ofing to the fixed-point value fob.
shear flow. Elsewhere, we have used an effective energetic Ideally, coarse-graining should continue until all wave-
tension to parametrize the reduction in fluctuations and théengths less than the collision length have been removed,
corresponding flow-induced strain or change in layer spacingt which point the resulting theory would be used as a start-
[7]. ing point for understanding the dynamics of the usual mean
It is important to recognize that, although the “tension” in smectic layer displacement, rather than the microscopic
Table | applies, strictly, only to wavelengths of order themembrane positiom. Note that, at this point, collisions in-
collision length, it is generated at all wavelengths larger thariervene in a nontrivial way to limit affine layer advection,
the smallest cutoff and grows during the coarse-graining proand the coarse-grained smectic phase varialdevects ac-
cedure. In Ref[7], we replaced this wave-vector-dependentcording to yyd,u rather thanyud,u. This behavior should,
tension by an average value that applies for all wave vectorsn principle, emerge smoothly in an ideal calculation.
This certainly changes any quantitative predictions, but does The resulting dynamics of a strongly fluctuating layered
not influence the qualitative aspects of those results. Thisystem in shear flow are best cast in terms of the velocity
naive estimate should evidently be replaced by a much morgeld, in the standard two-fluid forrf26], as
sophisticated dynamic analysis that simultaneously performs
the dynamic coarse-graining in the presence of the advective R
nonlinearity and a self-consisteftr coarse-grainingproce- p(di+v-V)v=—Vp+yVev+nf,, 4.3
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(ditv-V)u=v,, (4.4 P

where we have, for convenience, shown the form in the ab- R
sence of permeation. The normal forte differs from the

usual normal force by the term generated upon coarse

graining, ‘1 P

-—

SF  AA X0 e

— 2
fn_ 5U(q,t) + d qxu(qvt) ’ (45)

FIG. 6. Pore defects in a membrafsde view.

where the free energ¥ should also include the layer com-

. = . not detract from our primary message that the perturbation of
pression energy densifyB(d,u)2. Note the factor ofl in the P Y g b

: a . X the microstructure of highly fluctuating membranes can lead
second term, reflecting the inherent three-dimensional natutg . o qditional restoring term in the long-wavelength dy-
of smectic elasticity. The noise defines an effective temperas; nics

ture that is generally not the physical temperature, and may (iv) The coarse-graining can be performed only up o

e . 2
have additional correlationB,q; that reflect the flow(de-  pecqse at this length scale the long-range steric repulsion is
pending on whether or not the scaling regime has beefyortant. In fact, we have completely ignored steric inter-

reached _ actions. A more precise treatment would involve simulta-
The additional term is only present for strong flows, andneqysly treating flow and collisions, or treating the flow

penalizes layer undulations in thedirection; this is because \yithin a self-consistent scheme using, for example, a har-
such undulations are performed at the expense of the micrgg onic potential to mimic collisions.

scopic height fluctuations, which are highly stretched in  1pe significant accomplishments of this study have been,
strong flows. This term inot expected to appear in situations first, a qualitative estimate of the effect of flow on highly
whe_re the microstructurg of the smectic Iaygrs is essemia"ﬁuctuating lamellar phases. More importantly, however, is
undisturbed by flow, as in typical thermotropic smectiost 1o demonstration that flow can strongly modify the fluctua-
see the calculation of Auernhammetral. [6] for a counter- oy spectrum and generate new effects in the macroscopic
example. One could also envision this term as a ”Onequ'“b'response, via an RG-like self-consistent coarse-graining
rium contribution to an effective free energy, which has beengchnique. The theory that emerges has a natural effective
postulated by Jou and co-workers in their studies of complexgise that need not satisfy the usual equilibrium fluctuation-
fluids using extended irreversible thermodynami@];  gissipation theorem. Similar renormalizations of hydrody-
however, the dependence on strain rate that we defye, npamic descriptions can be expected for other complex fluid
~y°m, is not necessarily analytic, unlike their assumptions.systems with highly fluctuating mesoscopic degrees of free-

It is important to remember that the generation of thedom, such as wormlike micellar systertfsr example, the
tension-restoring term is only one of several possible dymicellar length, modulus, and relaxation times could be ex-
namic effects; other effects include the rearrangement of depected to renormalize due to the effect of flow on the local
fect distributions, which is also likely to lead to a shear thin-charge distribution and undulation spegtra
ning respons¢28].
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In this work, we have studied the effect of flow on the
dynamics of fluctuating membranes. We have made several
assumptions, which we collect for completeness. APPENDIX A: PERMEATION LENGTH SCALE

(i) We assumed that an expansion is sufficient to de- . . .
scribe the effect of coarse—grai?ﬂng the theory up to the col- Wwe estimate th_e permeation lengghby assuming th_at
lision length; in this limit, the renormalized noise reduces toPermeation '_S (_jomlnated by solv_ent flow through pores in fche
an effective temperature. Whether or not scaling is trulymembranes, indeed, at certain surfactant concentrations
reached is an open question. It is more likely that there arE?Ores aré very common-—see, for exa_lmple, ‘h‘? _stud|es
residual noise correlations when the collision length has bee 9,30. we assume cylindrical pores of diameter S.Mth'n
reached. Moreover, the critical dimensidp is quite high a membfa“e OT thlckness_ separatgd t.)y amean distari¢e
and fluctuations are quite important; we have considened (Fig. ©). We_W'Sh to derive the kinetic coefficient, for
=—1,0,2, for which, respectivelyl.=%*,8,9. layer relaxation, defined by

(i) Since ans expansion is not likely to hold so far from
the critical dimension, our calculation is strictly a self-
consistent one-loop calculation. dh= —Aogp (A1)

(iii) We have considered the different membrane relax-
ation mechanismgpermeable, squeezing, isolatedepa-
rately. In reality, the mechanism changes during the coarsdeentifying the mean solvent flow veloci) with the re-
graining process, according to Fig. 2; nonetheless, this dodaxation speed of the membrangh yields
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SH [Eq.(3.19] to find the fixed points\} for different values of
(V)~Aop (A2)  m, We also calculate the general expression for the self-
energy, and the associated, derived from the recursion
The pressure differenaep=p* —p~ driving solvent flow is  relation in a “first step” coarse-graining process.
given by the force per aredf/ sh that the membrane exerts

on the fluid. Thus the kinetic coefficient is 1. Coarse-grained self energy
(v) After demonstrating that a naive calculation of the self-
Ao~ — (A3) energy, equivalent ta,=0, leads to a divergence, the main

Ap task here is to show how the divergence is eliminated for
For each pore, the mean velocity is the flux of mate@al A,#0, enabling us to proceed with the integration. Having

flowing through a pore per unit surface area of membrane €Stablished in Sec. il thhat the self-enerdsg. (3.5)] can
be written in powers ofj;, we commence from its expres-

Q sion in terms of the renormalized propagdtgg. (3.7)] and
(v)= A (A4) its corresponding noise correlatipg. (3.8)];
We note that in terms of permeabili®y, the flux is given by __ 2 (qx )G (q K Q)
Q/A=—"PVpl/n (Darcy’s law. ThusP=Ayn7, which was *Gw)==y 2 2 % Rl ™
used by Leng31] in the context of swelling compressed ) "
lamellar phases. To calculate the flux, we assume that the %G 9+k w—Q) D 9+k
pressure gradient sets up a Poiseuille flow given by the vis- Rl ~ ™ o2
cous flow force balance, 2
+D, qx+k } (B1)
v A
ZaP (A5)
W T

We consider the slow hydrodynamic regime—0, and ig-

whereu, is the velocity of the solvent at the center of the N°T€ frequency-dependent corrections, so that

flow, and so
Gr(q) *=—iw+A(@S Xa+A,q, (B2

A RZL; 7 (AB)  where Ay=a5(q,0), A(Q)=Ao,q™, andS }(q)=«q*. The
disregard for frequency-dependent corrections should suffice
On substituting the expression for the mean velocity in Eqto obtain scaling properties. The sums are converted to inte-
(A3) by the flux in Eq.(A6), we obtain an expression for the grals by Eq.(2.2),
kinetic coefficient

wla dd—1
L s[4 j""‘d S ey
0o~ TRZ»,’- (A?) (27T)d 1
Therefore, the “permeation length” is=w*/(R?7). where S,=n7"?T'(n/2+1) is the surface area of an
n-dimensional unit sphere and the limitskirare given by the
APPENDIX B: CALCULATION OF THE SELF-ENERGY physical cutoffs. The first step is to perform theintegral by
AND THE CRITICAL POINTS FOR DIFFERENT contour integration, yielding a positive pole at
RELAXATION MECHANISMS
q 2 4+m
In this appendix, we calculate the coarse-grained self- iQ:—[AX(kX+—X + KAkt = ,
energy>(q,0), which we insert into the recursion relation 2 2
Ox q" Ox
7 kd zdkSi 1 qX ?_kx)|:Do k+§ k+2 :|
E(q O) J;) (27T)d 1 q 2 q 44+m q 4+m q 4+mj -
X X
[AX( Ky + 7) +rAolk+ 5 2A,| K2+ — 2| T rMokt S| FrAgk—3
(B4)
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As we explained in Sec. Il B, the leading long-wavelength (14+2m—d) )

behavior arises from an expansion of H&4) to lowest E(CLO):—ZmUquxL (B8)
order in qf, which we now investigate for the casag=0
andA,#0. ForA,=0, and thus als®,=0, the self-energy

becomes where
3(0,0)= — Y22 Do foc ki~2dkS,_, U=5?2 Si—2 d+m-2 14+2m—d>
i quZ(KAO)Z o (2m)dt 8(m+4)(2m)9-?2 m+4 m+4
2—d—m)/(m+4) A (—14-2m+d)/(m+4)
1 2k, (K3 + kyk?) , X Do(kAg)! my/(m+4) A (
S TECMETEL +0(ay), 5 \ (16~ m+2a)/(m+ 4) (B9)

B5
B5) I'(v) is the Gamma function and we have used

which diverges at lovk for 10+m—d>0 (note that all re-

laxation mechanisms we consider obay-d—10). As we = x¥ ldx I'(z)I'(w)
discuss at the end of Sec. Il B, this divergence is unphysical. fo (L7 = T(z+w) [Re(z)>0, Rew)>0].
Upon coarse-graining the theory, the teAmg? will be gen- (B10)

erated, which obviously changes the character of the integral.

Next we show that the implementation of coarse-graining_l_ . ) .
such that ,#0 removes this divergence. he negative exponent df, in Eq. (B9) reveals the diver-

Following the first step of the renormalization-group 96NC€ established_ garlier and therefore reaffirms the neces-
sity for coarse-graining.
Inserting the self-energhEq. (B8)] into Eq. (3.19 leads
to an expression for the recursion relation fog, which is
most conveniently written in terms of the coupling constant

analysis in Sec. Ill C, the removal of high wave vectiotsin
the x direction in the ranga.e™'<k,<\ is equivalent to a
change in limits,

nodkg (= d972K, Sy_s Y
> _’f 7|2_X T ond-2 (B6)
K xe'emJo (2) dU_16+m—2dU (14+2m—d)? U2
d - m+4 - “(m+4)(m+10-d)
Note that there is no change in the limits in the perpendicular (B11)

direction. We showed in Sec. Il C that wheén,#0 andm
=—1, we approximatdk|— |k, | so that the renormalized
propagator becomes E(.12 and the noise becomes Eq.
(3.13. In addition, within the scaling regime or close to the
fixed point, D,—0. With these assumptions, the resulting
approximation to the lowest order expansion of the self
energy is

where we have used E¢3.17) to eliminatez. Having thus
removed the high wave vectors and rescaled all the param-
eters, the final step of the RG analysis is to find the fixed
points of Eq.(B11) for which the theory is invariant. Con-
“sistent with the previous determination of the critical dimen-
sion, the linear term changes sign fo=d.=(16+m)/2.
Since the quadratic term is negative foxxm+10 (or d

S Q012 2 ZDOJA dk, (= k97 3dk, Sy_ <d, for m< —4), there is a nonzero stable fixed point,
(q, )_ Y qx 2 }\e_|27T 0 (27T)d_2
€
2 [ — .
1 ALK U =5a—e (B12)

—+
4 2(AKCH KkAQKHT™)

kT

X
(AKG+ kA ok!™™)?2

to first order ine, wheree=d—d,. This shows that the RG
perturbation is well-behaved and the exponents are correct.
) ) Ford>d,, the only stable fixed point ig* =0, correspond-
The divergence that we encountered beforefpr=0 isNnoW  jng to an irrelevant nonlinearity and recovering the expo-

eliminated, which enables us to proceed with the integratioments for the linear theory. Thus in the general casedfor
over all wave vectors in the transverse direction, in order to jm—2>0,

calculate the self-energy(q,0) to be inserted into the recur-
sion relation[Eq. (3.19].

+0(qp). (B7)

A: — a,m+l[-l—4+mK27dfm)\7167m+2dA62m78

2. Calculation of the fixed points X y2(4+m) 114+ 2m-d) (B13

With the condition thad+m—2>0 (a criterion that we
discuss later integration of Eq(B7) leads to where
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9S,_, 4+m ) d+m-2
Amt+1~ r
4(m+4)(2m)94-1 16+m-2d m+4
144 2m— g ] @+ miaa+am-a) e
A m (B14

We may apply this result to two of the relaxation mecha-
nisms that we considered; both results are found in Table | in

Sec. IV. For the permeable casks 3 andm=0,

-|—4/11A8/11_
A*=a, 281
X
L1 10111

ik

For the confined cas&l=3 andm=2,

where

411
=0.342.

1

4

ay= (B15)

1895, (
r
25602

T25 A3’5_
A: = ag —74/5-
KlIS)\4/5

2 1)
5
A similar analysis cannot be conducted for the cdse
=3, m=—1. In the hydrodynamic limit, a divergence in the
lower limit in the k, integral of Eq.(B7) occurs ford+m
—2=0. By introducing a lower cutoff given by the inverse
collision length of the sys'[emrjl and writing the integral in

terms of the dimensionless quantiyy= LSAXAZIKAO, the
expression for the self-energy fd=3, m=—1 becomes

where

2/5

455,
=0.378.

25612

as= (B16)

2

~2
3(q0)= - a}‘zZ—ADiO 3 In(y+1)— y+L1 - (yil)z
X Al
where
> (B17)

ap= ~0.000528.
961

We now proceed as before by combining E8.19 and the
expression for the self-enerdizq. (B17)] to give the differ-
ential flow equation in terms of,

dy ao'YzDo '-37\2 ’ y
a—y[—l'f‘ e KAoy 3 In(y+1)—T1
2
y
C(y+1)? ] | o
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The unstable fixed point corresponding to the irrelevant non-
linearity is given byA,=0. As we are unable to give an
analytic expression for the stable fixed-point solution of Eq.

(B18), we show instead its power seriesﬁrﬁ,

9y 3
N LA
KSAS

2

TLE\. .
> Y+0(¥9)|.

=
X 0 Y
K2A0

3

2

2

(B19)

Hence for small strain rates,* ~ 2.

3. First step coarse-graining

Here we demonstrate the procedure for a “first step”
coarse-graining of the self-energy in Sec. llID, i.e., we cal-
culate A, by perturbing about the trivial fixed poinA}
=0. First we return to the expression for the coarse-grained
self-energy in Eq(B4) derived from Eq(B1). Upon coarse-
graining in thex direction, the limits of the sum and the
integration are changed according to E86). However, due
to being far from the scaling regime, the assumption that
|k|—|k, | no longer holds. Hence in the limit,—0 (and
thusD,—0) appropriate for a “first step” coarse-grain, the

integral becomes
JA dkxf“ k97 3dk Sy,
xe '2mlo  (24r)972

2K, (k3 +kek?)
2|k|12+m

. D
3(9,0)= — y2q2 ———
(0.0=-7q 2(xho)?

1

X 2T +0(q)) (B20)

from which we may compute the self-energy for genenal
andd,

2(q0=-p (B21)

122
K2A0A9+m—d7 Ol -

B is a numerical prefactor that depends on the relaxation
mechanismm and the dimensiou,

o Su2 (d—z) 10+m—d)
8(2m)d4-1 2 2
r 12+m\ |71t 5 12+m—d\ [ 10+ m—d
2 2 2
6 d—2\/10+m—-d| d/{d-2 B2
2 2 72172 (B22)

On substituting Eq.B21) into the recursion relation for
around the trivial fixed pointEqg. (3.21)], we find that

dA, (=B (B23)

2
K2A0)\9+m_d’y !

which leads to the “tension” that depends on the cutoff in
Eq. (3.22.
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